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Abstract

As urban residents demand higher travel quality, vehicle dis-
patch has become a critical component of online ride-hailing
services. However, current vehicle dispatch systems strug-
gle to navigate the complexities of urban traffic dynamics,
including unpredictable traffic conditions, diverse driver be-
haviors, and fluctuating supply and demand patterns. These
challenges have resulted in travel difficulties for passengers
in certain areas, while many drivers in other areas are unable
to secure orders, leading to a decline in the overall quality
of urban transportation services. To address these issues, this
paper introduces GARLIC: a framework of GPT-Augmented
Reinforcement Learning with Intelligent Control for vehicle
dispatching. GARLIC utilizes multiview graphs to capture hi-
erarchical traffic states, and learns a dynamic reward function
that accounts for individual driving behaviors. The frame-
work further integrates a GPT model trained with a custom
loss function to enable high-precision predictions and op-
timize dispatching policies in real-world scenarios. Experi-
ments conducted on two real-world datasets demonstrate that
GARLIC effectively aligns with driver behaviors while re-
ducing the empty load rate of vehicles.

Code — https://github.com/Applied-Machine-Learning-
Lab/GARLIC

1 Introduction
The past decade has witnessed explosive growth in on-
line car-hailing services, fundamentally transforming urban
transportation. Central to this transformation is the role of
vehicle dispatching (Shi et al. 2024a), which serves as a
pivotal component in reducing the waiting time of passen-
gers, increasing the income of drivers, and facilitating daily
transportation (Barrios, Hochberg, and Yi 2023; Rahman
and Thill 2023; Sadrani, Tirachini, and Antoniou 2022).
In recent years, reinforcement learning (RL) methods have
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Figure 1: A vehicle dispatching scenario.

emerged as outstanding performers in areas such as multi-
agent control and sequential decision-making (Qiu et al.
2023; Ellis et al. 2024; Han et al. 2023a). Therefore, many
studies have leveraged RL techniques to enhance vehicle
dispatching, treating it as a multi-agent sequential decision-
making task (Guo et al. 2024; Huang et al. 2023).

However, unlike traditional multi-agent reinforcement
learning (MARL) approaches applied in other domains, ve-
hicle dispatching presents a unique challenge due to the
complex interplay between observable local traffic states and
undetectable global spatiotemporal correlations. Each vehi-
cle acts as an individual agent, with access limited to the
environmental states in its immediate vicinity. This makes it
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difficult to obtain a comprehensive, global view of vehicle
supply and demand. As illustrated in Figure 1(a), a vehicle
must rely on multiple hops of vehicle-to-vehicle (V2V) com-
munication to acquire more extensive traffic flow informa-
tion. Furthermore, expanding a vehicle’s receptive field ex-
ponentially increases communication latency among agents
(Huang and Lin 2022; Wang 2023; Han et al. 2024), as de-
picted in Figure 1(b). According to the traffic flow theory
(Gerlough and Huber 1976), traffic flows also behave differ-
ently at diverse granularities. For instance, macro-level traf-
fic flow provides an overview of travel times, as shown by
the arrows between purple and brown grids in Figure 1(c). In
contrast, micro-level traffic states can pinpoint traffic jams
directly, as illustrated by the different road segment colors
(green, yellow, and red) in Figure 1(c). In summary, obtain-
ing a comprehensive and accurate view of traffic states is a
significant challenge in vehicle dispatching.

Accurate vehicle dispatching also necessitates nuanced
driving behavior modeling, which accounts for the individ-
ual preferences of different vehicle agents regarding dis-
patching instructions. Driving behavior reflects the driver’s
personal inclination toward specific dispatching tasks, and
plays a crucial yet often overlooked role in transportation
(Wang et al. 2024a; Robbennolt and Levin 2023; Zhang et al.
2023d; Han et al. 2023b). For example, consider the taxi
driver of the red car in Figure 1(c), who is more familiar
with region A. This driver might prefer to pick up passen-
gers in region A rather than in the unfamiliar regions B or C,
even if those regions are closer. Consequently, a dispatching
algorithm that ignores drivers’ behavior patterns may disrupt
the overall traffic system.

To address the all above challenges, we propose a
GPT-Augmented Reinforcement Learning with Intelligent
Control framework, GARLIC, which utilizes an improved
MARL approach. Specifically, we design a hierarchical traf-
fic state representation module to integrate traffic features
at different granularities, providing a comprehensive rep-
resentation of real-time traffic conditions. Additionally, we
quantify driving behavior through dynamic rewards using a
contrastive learning method, aligning dispatching instruc-
tions with the intents of drivers. Given the complex ana-
lytical and understanding capabilities required for learning
vehicle dispatching policies, we employ a Generative Pre-
trained Transformer (GPT)-augmented model with a self-
defined loss function to enhance the expression of the frame-
work. To the best of our knowledge, our innovative frame-
work offers a comprehensive solution to the core challenges
in vehicle dispatching, setting a new benchmark in this field.
Our main contributions can be summarized as follows:

• Our proposed framework, GARLIC, combines hierarchi-
cal traffic state representation, dynamic reward genera-
tion, and GPT-augmented dispatching policy learning. To
the best of our knowledge, this novel approach builds
a complete GPT-enhanced MARL vehicle dispatching
framework that has not been explored previously;

• We utilize multiview graphs to depict the hierarchical
traffic states in the road networks and establish a dynamic
reward model for capturing driving behaviors, leading

to better dispatching policy outcomes. These innovations
contribute significantly to the improved performance of
vehicle dispatching;

• Extensive experiments on two real-world road networks
against advancing baselines demonstrate the effective-
ness and efficiency of GARLIC.

2 Related Work
This section provides a concise overview of related research
in vehicle dispatching. Unlike car-hailing order dispatching,
vehicle dispatching focuses on relocating vehicles to ensure
a future balance between supply and demand. Many previ-
ous studies have modeled this as a Markov decision process,
which relies on explicitly fitted state transition probabilities
(Zhang et al. 2024, 2023a; Sun et al. 2024). To efficiently
model this Markov decision process, RL has been widely
applied to vehicle repositioning tasks (Chen et al. 2024; Qin,
Zhu, and Ye 2022), where the global traffic state and re-
ward function are used to enhance the precision of reposi-
tioning. However, the global traffic-state perception in ex-
isting methods has high communication latency, hindering
real-time dispatch (Shi et al. 2024b). To address this, we de-
signed a multiview graph learning module with limited hops.

Furthermore, driver behavior plays a crucial role in trans-
portation analysis (Cui et al. 2024; Zhang et al. 2023b; Ma
et al. 2023; Han et al. 2023a). Recent studies have begun to
incorporate driving behavior into driving applications. For
example, Li et al. (Li et al. 2022) used IL method to repli-
cate human driving behavior, effectively transferring these
strategies to autonomous vehicle scenarios. Jackson et al.
(Jackson, Jesus Saenz, and Ivanov 2024) uses the powerful
analysis and processing capabilities of LLAMA-7B to char-
acterize driving behavior and then uses it for autonomous
driving simulation. However, there is a relative scarcity of
research that quantifies vehicle driving behavior to directly
evaluate the rationality of vehicle dispatching orders. Conse-
quently, there is an urgent need to design a more efficient and
accurate driving behavior-based vehicle dispatching system.

3 Preliminary
In this paper, we adopt a novel MARL method to optimize
online car-hailing dispatching policies. This section outlines
critical definitions for understanding our paper.
Vehicle Trajectory τ : This refers to a sequence of GPS
points (xt, yt) recorded over a time interval t ∈ [T ], rep-
resented as τ = (x1, y1, t1), · · · , (xT , yT , tT ). A vehicle
can generate multiple trajectories based on different statuses
(such as empty or occupied). We focus solely on empty ve-
hicle trajectories to better understand driving behavior when
drivers don’t have a specific destination.
Multiview Graph Gi: We define the multiview graph as
Gi = {V i,Ei}, where i ∈ {micro,meso,macro} presents
different views, the node set V i represents various traffic
zones, and the edge set Ei indicates the connections among
these zones. The features of each traffic zone at time t are
denoted by Xi

t ∈ R|V |×mi

, capturing vehicle availability
and order demand. For different views of graphs, we have
different graph features: mmicro ̸= mmeso ̸= mmacro.
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Figure 2: The framework overview of GARLIC.

Multi-Agent Reinforcement Learning for Vehicle Dis-
patching: In our model, each vehicle in the road network
acts as an independent agent, with distinct driving behaviors
and the ability to generate continuous trajectories and mon-
itor local traffic conditions. For each agent (vehicle) u, we
consider the following five essential elements:
• Decision Time [T ]: It is a set of all finite decision

timesteps [T ] = {1, · · · , t, · · · , T}. At each timestep t,
the vehicle location and environment states are sampled.

• Action Au: Au = {au0 , · · · , aut , · · · , auT } represent the
set of actions to balance the vehicle supply and demand.
aut := {dis, deg} is an action performed by the vehicle u
at time t, where dis is the straight-line distance a vehicle
needs to travel from time t to t + 1, and deg means the
azimuth angle between the target and current locations.

• State Su: Su = {Su
0 , · · · ,S

u
t , · · · ,S

u
T } represents the

set of traffic states observed at each time t. Here Su
t is the

concatenation of the state embedding matrix EmbG,t ex-
tracted from the traffic environment and the location em-
bedding matrix Embuloc,t of the vehicle at time t.

• Reward Ru: Ru = {ru0 , · · · , rut , · · · , ruT } represents the
set of rewards calculated by the reward function, and it is
predefined according to the driver’s driving behavior and
the taxi fare. The total return is defined as

∑
t γ ·rut , where

γ is a discount factor, γ ∈ [0, 1].
• Policy πu

θ : πu
θ = πu

θ (a|s) is a mapping from traffic states
to dispatching actions of the u-th agent. The policy π de-

termines the appropriate vehicle dispatch instructions a by
analyzing the state s, which includes various features of
the environment and the current status of the agent.

While agents in the same area and close to each other may
share the same multiview graphs Gi of the road network and
observe similar traffic features Xt, they exhibit unique driv-
ing behaviors that significantly influence their vehicle trajec-
tories. To account for these behavioral differences, our study
departs from conventional MARL frameworks with fixed re-
wards by employing a dynamic reward model. Additionally,
we propose a GPT-augmented MARL model to learn more
effective dispatching policies.

4 The Proposed Framework
In this section, we first provide a framework overview of
GARLIC. Then we introduce the hierarchical traffic state
representation method to capture the real-time traffic states.
Furthermore, we demonstrate a dynamic driving reward gen-
eration approach to score vehicle trajectories under differ-
ent driving behaviors. Finally, a GPT-augmented dispatch-
ing policy learning model is applied to combine all of the
components and learn the vehicle dispatching policy.

Overview
Figure 2 provides an illustration of the overall vehicle
dispatching framework, which is composed of three key

257



modules: the hierarchical traffic state representation mod-
ule, the dynamic reward generation module, and the GPT-
augmented dispatching policy learning module.

In the first module, we employ a multiview Graph Convo-
lutional Network (GCN) to represent the hierarchical traffic
state by integrating traffic information gathered by various
vehicles at different levels of granularity. By combining this
with GeoHash-based vehicle location embeddings, we can
accurately calculate the real-time traffic state of the specific
region where each vehicle is located.

The second module utilizes a Gated Recurrent Unit
(GRU)-based Recurrent Neural Network (RNN) to model
driving behaviors, generating dynamic rewards that are
weighted by the regional median carfare. This approach en-
sures that the reward system reflects both the temporal and
spatial nuances of driver behavior.

Finally, in the third module, we frame the training of
the MARL-based vehicle dispatching task as a supervised
learning process (Wang et al. 2024b; Yamagata, Khalil,
and Santos-Rodriguez 2023). For each agent, the time-
ordered states and rewards are utilized as inputs, and a GPT-
augmented model is employed to produce high-precision ac-
tions for vehicle dispatching.

Hierarchical Traffic State Representation
Urban spatiotemporal data exhibits hierarchical character-
istics (Ning et al. 2024; Zhang et al. 2023c; Han et al.
2020), which cannot be directly represented using a single
structured data format. For instance, features such as turn-
ing movements at a crossroad can only be captured from a
micro-level view of the traffic environment, whereas the av-
erage travel time is a feature observable only from a macro-
level perspective of the same environment. These features
differ in sampling frequencies, dimensions, and units, ne-
cessitating specialized approaches to represent and integrate
them accurately.

To address this issue, we present the road network as mul-
tiview honeycomb graphs, as shown in Figure 3(a). In this
representation, the road network is divided into grids com-
prising square hexagons of varying radii, each representing a
distinct view. Here, the hexagon-based grids ensure uniform
distance from all adjacent neighbors to the central grid, fa-
cilitating more precise modeling of different spatial regions
than square grid-based methods. To construct the multiview
graph, each grid is treated as a node, and the traffic informa-
tion in a grid is considered to be the node feature, with edges
connecting adjacent grids, as shown in Figure 3(b).

Unlike other road network modeling methods, we calcu-
late distinct traffic indicators for different views of graphs.
The micro-level graph primarily utilizes vehicle trajectory,
road congestion status, and vehicle speed—data that can be
directly obtained from the local environment (radii ≤ 1km)
of a vehicle. The meso-level graph considers factors such
as traffic volume, average traffic speed, intersection perfor-
mance, and parking availability, which require analysis of
all vehicles passing through a set of certain traffic sections1

1The “traffic section” refers to a specific segment of a road
or highway between two points, often delineated by intersections,

(1km < radii < 5km). Meanwhile, the macro-level graph
includes features such as average travel time, road network
connectivity, and overall traffic conditions, which necessi-
tate a more comprehensive analysis of vehicles across a
broader range (radii ≥ 5km) of the road network.
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Figure 3: The multiview graph of road networks.

To extract refined the traffic embeddings EmbuGu
t

, a
GCN-based model is then deployed for multiview graph rep-
resentation for a vehicle u:

EmbuGu
t
=Concat

(
EmbuGu,i

t

)
,

EmbuGu,i
t

=GCN(Au,i,Xu,i
t ) = Au,iXu,i

t W i,
(1)

where i ∈ {micro,meso,macro}, W i is the weight matrix
that need to be trained, Au,i is the adjacency matrix of the
graph Gu,i under a specific view i, and Xu,i

t is the traffic
features related to the graph Gu,i at time t.

Note that a high-accuracy location embedding of real-
time trajectories is essential for this task. We first use Geo-
Hash (Morton 1966) to encode each real-time GPS point,
based on latitude and longitude, in the trajectory:

Embulocut = GeoHash (latut , lon
u
t ) , (2)

where t ∈ {0, 1, · · · , T} presents a specific timestep, and
locut := (latut , lon

u
t ) is the real-time GPS point of vehicle u.

By combining this location embedding with the traffic
state surrounding vehicle u at time t, we obtain the overall
state embeddings of vehicle u:

sut = Concat(EmbuGu
t
,Embulocut ). (3)

Dynamic Reward Generation
The effective implementation of vehicle dispatching in real-
world scenarios is largely influenced by driving behavior.
However, early studies often ignored the quantification of
driving behavior, focusing instead on minimizing vehicle
imbalance or maximizing benefits in dispatching optimiza-
tion (Wagenmaker and Pacchiano 2023). In this section, we
propose a dynamic reward generation method that incorpo-
rates both driving behaviors and anticipated income. It quan-
tifies the likelihood of drivers adhering to their driving habits
by analyzing the vehicle trajectories in real-time.

junctions, or other distinct markers.
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To accurately capture the relationship between driving
trajectories and corresponding driving behaviors in traffic
embeddings, we deploy a GRU-based RNN model. This net-
work calculates the probability put whether a trajectory be-
longs to a given vehicle u.

zut =σ
(
W zxEmbulocut +W zph

u
t−1 + bz

)
,

yut =σ
(
W yxEmbulocut +W yph

u
t−1 + by

)
,

put
′ =tanh

(
W ′

xEmbulocut + yut ⊙W ′
pp

u
t−1 + b′

)
,

put =zut ⊙ put−1 + (1− zut )⊙ put
′,

(4)

where t ∈ {1, 2, · · · , T}, h0 := Embuloc0 is the loca-
tion embedding at initial timestep (t = 0), W GRU ={
W zx,W zp,W yx,W yp,W

′
x,W

′
p

}
is the set of weight

matrices of GRU, and bGRU =
{
bz, by, b

′} is the set of bias.
We employ a contrastive learning method to optimize

the model parameters. Since different drivers exhibit dis-
tinct driving behaviors, trajectories generated by other vehi-
cles are used as negative samples when modeling a specific
driver’s behavior, as illustrated in Equation (5).

Losspre-training = max
∑

u∈[N ]

∑
t∈[T ]

qut log put , (5)

where N is the total number of online car-hailing vehicles,
qut ∈ {0, 1} is the ground truth of the GPS point generated
by the vehicle u at time t.

Additionally, when a vehicle is carrying passengers, the
regional median carfare earned by a driver is another factor
influencing vehicle dispatching. Therefore, we introduce the
dynamic reward function, which incorporates both factors
by introducing a hyperparameter α to weigh them together.

rut = α · put + (1− α) · σ(W farex̂fare,t), (6)
where σ(·) is the sigmoid activation function, x̂fare,t =∑T

t′=t xfare,t′ , and W fare is the weight matrix.

GPT-Augmented Dispatching Policy Learning
As discussed in the framework overview, vehicle dispatch-
ing can be effectively modeled as a MARL problem, which
can also be reformulated as a supervised learning task. In
this context, states and rewards are treated as sequential in-
put data, with the corresponding sequence of actions as the
output data. However, the complexity of transportation sys-
tems, which requires the analysis of intricate traffic states
and driving behaviors, demands advanced reasoning capa-
bilities. Recently, the GPT model has demonstrated strong
performance in handling long-sequence, context-dependent,
and structured data. Therefore, we utilize a GPT-augmented
model to address these challenges.

Note that the core part of a GPT model is the transformer
structure. The input of the transformer is a sequence of tem-
poral data, and we assign different positional embeddings to
the data at different timesteps. At each timestep, we mainly
use two deep transformer decoder blocks to extract the prob-
ability of the next action. We use the expected reward at the

current time step as the input of the first transformer decoder
block, and get the output embedding to guide the subsequent
transformer decoder block to calculate the result:

Embrt = DecoderT(P at−1
, rt, t),

P at
= DecoderT(Embrt , st, t),

(7)

where t starts from 1, and P a0
= 0 is initialized as the

zero tensor at t = 0. DecoderT(x, y, z) = DecoderkT ⊙
Decoderk−1

T ⊙ · · · ⊙ Decoder
(1)
T (x, y, z) is a k-layer deep

neural network of the transformer decoders. For each layer
Decoder

(l)
T (x, y, t) = Attention(x + Embpos(t), x +

Embpos(t), y + Embpos(t)), we add the same posi-
tional embedding Embpos(t) to each input x and y. Here

Attention(x, y, z) = softmax(
σ(xW x)σ(yW y)

⊤
√

dy

)σ(zW z),

where σ(·) is the GeLU activation function.
Finally, we use a Multi-Layer Perceptron (MLP) mapping

the action probability tensor P at to a unique result a′t in
the closed action set A as the action that a vehicle needs to
perform in the current step:

a′t = [a
(1)
t

′
, a

(2)
t

′
] = MLPW a(P at), (8)

where a(1)t

′
is the normalized distance from the current loca-

tion, a(2)t

′
∈ [0◦, 360◦] is the direction that a vehicle headed

to, and both of a(1)t

′
and a

(2)
t

′
make up the unique action that

controls this vehicle, W a is the training parameters.
Note that the difference between 359◦ and 1◦ is only 2

degrees when measuring angles. Most common loss func-
tions (e.g., MAE Loss and MSE Loss) cannot describe this
phenomenon well. To train our framework GARLIC effec-
tively, we proposed a novel loss function, named Geospatial
Loss (GeoLoss), to minimize the geospatial difference be-
tween the predicted action and the ground truth for this task,
and our training target is to minimize the GeoLoss that we
defined below:

minLoss(a′t, at) = min
(
|a(2)t

′
− a

(2)
t |2,

(360◦ − |a(2)t

′
− a

(2)
t |)2

)
+ |a(1)t

′
− a

(1)
t |2.

(9)

5 Experiments
This section conducts extensive experiments using 2 real-
world datasets to evaluate the effectiveness of GARLIC. We
first introduce the experimental settings. Next, we compare
GARLIC with representative baselines. Finally, the ablation
study and a case study are introduced.

Experimental Settings
Dataset. We use two datasets with different scales for ex-
periments: one is located in lower and midtown Manhattan,
New York City, USA2, and the other larger dataset is the taxi

2https://data.cityofnewyork.us/Transportation/2018-Yellow-
Taxi-Trip-Data/t29m-gskq/about data
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trajectory data from the core area of Hangzhou, Zhejiang
Province, CHN3. More details can be found in Appendix A.
Metrics. We use the Euclidean distance metric, Error, to
assess the discrepancy between predicted actions and the
driver’s actual driving intentions. Additionally, the empty-
loaded rate metric is employed to measure the efficiency of
the car-hailing service, which is another widely used metric
in transportation systems (Cao, Wang, and Li 2021).
Baselines. We compare GARLIC with baselines from two
different categories: (1) Online RL methods: MT (Robben-
nolt and Levin 2023) and FTPEDEL (Wagenmaker and Pac-
chiano 2023); (2) Offline RL methods: CQL (Kumar et al.
2020), TD3+BC (Fujimoto and Gu 2021), Decistion Trans-
former (DT) (Chen et al. 2021), RLPD (Ball et al. 2023),
latent-ORL (Hong, Levine, and Dragan 2024), and SS-DT
(Zheng et al. 2023); (3) traditional vehicle dispatching sys-
tems: DGS (Cheng, Jha, and Rajendram 2018) and A-RTRS
(Riley, Hentenryck, and Yuan 2020). More details about
these methods can be found in Appendix C.

Implementation Detail
To avoid network congestion, we only allow V2V commu-
nications between vehicles in adjacent regions. In addition,
we limit the waiting time for vehicles to broadcast and re-
ceive V2V multi-hop messages across different regions to
1 second, ignoring any timed-out transmissions. The imple-
mentation details can be found in Appendix D.

Overall Performance
The performance of all the baselines in both two datasets
is shown in Table 1, in terms of the two metrics we intro-
duced before, i.e., Error and empty-loaded rate. We use M
to present the Manhattan dataset and use H to stand for the
Hangzhou dataset. The performance of all methods is the
average result of the last 100 epochs in a total of 1000 runs.

We can see that GARLIC significantly reduces the er-
ror compared to other traditional vehicle dispatching sys-
tems, primarily due to our adoption of a more effective
loss function for guiding the model during back-propagation
and training. Unlike online reinforcement learning methods,
nearly all offline RL approaches, including ours, outperform
the online method by better utilizing offline data for effec-
tive training. Additionally, conventional offline RL methods
(e.g., TD3+BC, CQL, and RLPD) perform poorly on the
larger Hangzhou dataset due to their inability to gather com-
prehensive traffic information within acceptable transmis-
sion delays. Although DT, latent-ORL, and SS-DT use sim-
ilar stacked transformer decoder layers as our framework,
they do not model driving behavior in scheduling tasks, lim-
iting their accuracy.

When comparing the metric of empty-loaded rate in Ta-
ble 1, our method ranks among the best ones. However, our
model needs to weigh the driver’s personal driving behav-
ior habits. Therefore, an area with a slightly longer route
that is more familiar to the driver has more chance of be-
ing selected for vehicle dispatching. This caused the empty-

3Prviate dataset. To protect data copyright, we will share the
full dataset through academic collaboration only.

Error (km) Empty-loaded rate (%)
M H M H

MT 0.3517 0.3929 38.23 47.52
FTPEDEL 0.3307 0.3451 36.03 42.74
TD3+BC 0.3371 0.3243 37.22 50.13

CQL 0.3125 0.2368 35.17 46.87
DT 0.3051 0.2573 33.49 41.45

RLPD 0.3213 0.3004 36.24 48.21
Latent-ORL 0.3117 0.2086 34.37 45.22

SS-DT 0.3048 0.1843 32.25* 40.99
DGS 0.4125 0.1982 32.57 41.23

A-RTRS 0.3567 0.1957 32.39 41.04
GARLIC 0.3044* 0.1582* 32.38 40.71*

“*” indicates the statistically significant improvements (i.e.,
two-sided t-test with p < 0.05) over the best baseline.

For all metrics: the lower, the better.

Table 1: Experimental results of different baselines.

loaded rate of GARLIC to be slightly higher than the SS-DT
method on the Manhattan dataset. However, when the scale
of the offline dataset becomes larger (Hangzhou dataset), our
method has a stronger ability to find the optimal dispatching
strategy and achieve the best performance while satisfying
the driver’s driving behavior.

Ablation Study
The effectiveness of multiview graph. To better under-
stand the role of multiview graph learning in GARLIC,
we divide the road network into regions with diameters of
1 km and 2 km (micro-level), 5 km (meso-level), and 10
km and 20 km (macro-level). We then extract 5 graphs with
varying traffic features based on these granularities. Un-
der the same 1-second V2V data transmission delay previ-
ously mentioned, we sequentially use various combinations
of these graphs as inputs to conduct experiments. The re-
sults are presented in Figure 4(a). It indicates that the error
in graph learning using a single view is significantly higher
than that of multiview graph learning methods. Moreover,
when comparing different scales, it is evident that model
performance improves as the granularity of the scale de-
creases. To further explore the relationship between compu-
tational latency (including V2V communication and model
training time) and multiview graphs, we compared the train-
ing time of each model when achieving a scheduling error
of 0.7 km, as shown in Figure 4(b). It also verifies that the
multiview graph-based learning method could be more effi-
cient than the single-view graph-based learning method. In
addition, by analyzing the average error in Figure 4(a) along-
side the time cost in Figure 4(b), we selected three multiview
graphs with diameters of 2 + 5 + 10 km to model the traffic
of road networks efficiently.
The influence of driving behavior. To verify the influ-
ence of driving behavior, we conduct experiments on this
method alone via setting different hyperparameter α defined
in Equation (6). The experimental result is shown in Figure
4(c). When the weight of driving behavior increases, the er-
ror of the predicted vehicle trajectory decreases. At this time,
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Figure 4: Different settings of hyperparamters.

the vehicle follows the path given by the offline data and
cannot explore the path that can generate higher income in
accordance with the vehicle’s driving behavior. Conversely,
when α is close to 0, many passenger loading locations se-
riously deviate from the roads and regions familiar to the
driver although the vehicle can receive more orders. These
potential issues are more likely to cause traffic accidents.
From Figure 4(c) we can see that the trajectory error sig-
nificantly drops when α is between 0.4-0.7. Therefore, in
this paper, we set α = 0.67 to let the dispatch strategy in-
crease the driver’s income as much as possible while satis-
fying each driver’s driving behavior.

Case Study
We randomly choose an online car-hailing car in Hangzhou
as our experimental object. We simulated the vehicle dis-
patching routes using different methods to compare with the
ground truth (Origin), as shown in Figure 5. We selected a
local area in Hangzhou for visualization. Different shades
of red in honeycomb grids indicate the length of time the
vehicle stayed in one week of history. When the area has no
color, the vehicle has not been to this area that week. It repre-
sents the driver’s personalized driving behavior. The vehicle
is currently located in the bright blue grid, and we visual-
ize 4 dark blue areas with ride-hailing demand in the next
15 minutes. We use arrows of different colors to indicate the
calculation results of different models.

As can be seen from Figure 5, Order 1 is farther from
the departure point of the vehicle compared to Orders 2, 3,
and 4. Since Order 4 is in the city center, most methods se-
lect this area as the vehicle pick-up point. However, there
is a direct arterial road between Order 2 and the vehicle’s
departure location, so some methods choose to dispatch the
vehicle to where Order 2 is located. Our method analyzes
the driver’s driving behavior and finds that the most suitable
place to pick up passengers is the area where order 1 is lo-
cated. Meanwhile, only the results calculated by our method
are consistent with the actual vehicle trajectory, which shows

Car
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Figure 5: An example of vehicle dispatching.

the effectiveness of our proposed method.

6 Conclusion

In this paper, a novel framework called GARLIC is pro-
posed to address the problem of vehicle dispatching while
considering the driving behavior of drivers at the same
time. Specifically, it can be divided into three modules, i.e.,
the hierarchical traffic state representation module for traf-
fic state extraction, the dynamic reward generation mod-
ule for driving behavior as well as carfare analysis, and the
GPT-augmented dispatching policy learning module for bal-
ancing vehicle supply and passenger demand. The model
achieves a response in seconds under multiple real datasets
and has excellent performance. In the future, we hope to
combine the Kafuka engine and cloud-edge collaboration
technologies to further optimize the information transmis-
sion of each node in vehicle dispatching, achieve a quick re-
sponse of hundreds of milliseconds, and improve the driver’s
order acceptance and user’s riding experience.
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