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ABSTRACT
Traffic signal control plays a pivotal role in the management of
urban traffic flow. With the rapid advancement of reinforcement
learning, the development of signal control methods has seen a
significant boost. However, a major challenge in implementing
these methods is ensuring that signal lights do not change abruptly,
as this can lead to traffic accidents. Tomitigate this risk, a time-delay
is introduced in the implementation of control actions, but usually
has a negative impact on the overall efficacy of the control policy.
To address this challenge, this paper presents a novel Traffic Signal
Control Framework (PRLight), which leverages an On-policy Traffic
Control Model (OTCM) and an Online Traffic Prediction Model
(OTPM) to achieve efficient and real-time control of traffic signals.
The framework collects multi-source traffic information from a
local-view graph in real-time and employs a novel fast attention
mechanism to extract relevant traffic features. To be specific, OTCM
utilizes the predicted traffic state as input, eliminating the need for
communication with other agents and maximizing computational
efficiency while ensuring that the most relevant information is
used for signal control. The proposed framework was evaluated
on both simulated and real-world road networks and compared to
various state-of-the-art methods, demonstrating its effectiveness in
preventing traffic congestion and accidents.
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1 INTRODUCTION
Traffic signal control has long been recognized as one of crucial
means ofmitigating urban traffic congestion, with numerous studies
affirming its effectiveness in improving city efficiency and economic
growth [9, 27, 35, 46]. Despite this, traditional fixed-timing [20, 30]
and hand-crafted methods [5, 23] remain prevalent in the traffic
signal control of many cities, which are based on predefined rules
and lack the ability to dynamically adjust traffic signals in response
to real-time traffic conditions. To address this limitation, there has
been a growing interest in the application of novel techniques,
such as data-driven reinforcement learning (RL), for traffic signal
control. These methods allow learning agents, such as traffic signal
controllers, to interact with the environment and make decisions
(e.g., selecting the appropriate traffic phase1) in real-time [42].

Efforts of RL-based traffic signal control have utilized optimal
green time length as the action for controlling traffic lights [13,
14, 19]. These methods calculate the green time length of the next
phase when the current action’s execution time is about to end.
However, a limitation of these approaches is that they do not al-
low for immediate switching of the traffic light once an action is
determined, which may not meet the real-time requirements in
practical. For instance, in small to medium-sized cities in China,
peak hours can be as short as half an hour, but one signal control
cycle in this period can take up to 120-180 seconds. As a result,
RL-based methods that only determine optimal actions every cycle
may not be able to effectively capture the best traffic control oppor-
tunities. On the other hand, other RL-based methods have adopted
a timestep-based signal control strategy [28, 37, 45], which allows
for real-time switching of traffic lights. These methods have been
shown to perform well in real-world road network environments.

In real-world timestep-based traffic control, the implementation
of a countdown period, which serves to warn passing vehicles and
pedestrians of an upcoming phase change, is a widely accepted

1A traffic phase refers to a set of pre-defined traffic signals, displayed for a specific
duration, that regulates the movement of vehicles or pedestrians at an intersection.
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Figure 1: Risk of a sudden change of the signal light.

practice [3]. This is because a sudden change in signal phases in-
creases the likelihood of traffic accidents, as illustrated in Figure 1.
To mitigate this risk, solutions have been proposed that extend
the amber time or add a brief all-red phase [10, 18, 33]. However,
these approaches negatively impact traffic efficiency by reducing
the green time of each phase. Thus, the introduction of a count-
down period before the switch of signal lights is deemed both
reasonable and necessary. However, the issue of action hysteresis
in timestep-based traffic control is introduced by the fact that the
actual implementation of the phase switch occurs after it is initially
decided, which may cause optimal control to be misleading and lead
to traffic congestion. Most existing timestep-based signal control
methods do not address this problem and its adverse effects.

In this paper, we propose a Traffic Predictive Signal Control
Framework (PRLight) to address the problem of action hysteresis
in traffic signal control. To achieve this, PRLight incorporates the
relationship between current actions and the predicted future traffic
state by using a dynamic graph representation method, an Online
Traffic Prediction Model (OTPM), and an On-policy Traffic Control
Model (OTCM). Specifically, (i) the dynamic graph representation
employs a novel graph attention network to extract dynamic graph
representations from real-time traffic features with an improved
fast attention mechanism based on Taylor expansion. (ii) OTPM
provides short-term feature prediction to assist in resolving the
issue of action hysteresis based on the graph representations. (iii)
OTCM models the traffic signal control over multiple intersections
as a multi-agent reinforcement learning (MARL) problem. The pre-
dicted traffic state, instead of the observed one, is used as input for
the control policy to evaluate the impact of delayed actions better.
The policy of each agent in MARL is trained efficiently using a
novel distributed framework, where each agent can train its policy
independently. The training balances the limitations of local obser-
vations and the high computational costs of global observations by
using a local-view graph, which includes the most relevant global
traffic information. This eliminates the need for communication
among agents and maximizes computational efficiency.

In summary, our contributions are demonstrated as follows:
• We propose a framework, PRLight, which uses MARL to model
signal control over intersections and incorporates short-term
predicted traffic state as input to address the issue of action

hysteresis due to countdown. To the best of our knowledge, this
is a novel approach that has not been explored previously;
• We develop a novel attention-based graph learning network to
extract dynamic graph representations from real-time traffic fea-
tures, which utilizes an improved fast attention mechanism based
on Taylor expansion to accelerate the computation process;
• We present a distributed training algorithm for the policy of
agents in MARL, allowing each agent to train independently
without sacrificing global views;
• Extensive experiments based on both simulated and real-world
road networks demonstrate the effectiveness and efficiency of
the framework PRLight.

2 PROBLEM FORMULATION
In this paper, we adopt the MARL framework to solve the problem
of real-time traffic signal control. More specifically, we consider
a traffic signal control machine at an intersection to be an agent.
Each agent can obtain environmental traffic information and con-
trol one intersection independently. Before introducing our MARL
framework, we first provide one crucial definition.

Definition 1. Phase lock/unlock stage. When a signal light
enters the countdown stage or 𝑇min time is left in the green light,
the current phase is defined as the phase lock stage. Otherwise, it is
defined as the phase unlock stage.

The purpose of the phase lock stage is to prevent the real-time
signal light from suddenly changing and ensure that vehicles and
pedestrians can safely pass through the intersection. In this stage,
the signal light does not accept any additional control actions to
avoid traffic accidents. In the phase unlock stage, the signal light
could accept any control actions that may maintain or switch the
current traffic phase after a countdown.

Then, we demonstrate our MARL framework. We consider a
global road graph G𝑔 with 𝑁 signal-controlled intersections and
related traffic features 𝑿𝑔

𝑡 , and utilize 𝑁 agents to control these
intersections. For each agent 𝑢, we define five key elements:

• Decision Time ([𝑇 ]): It is a set of all finite decision timesteps
[𝑇 ] = {1, · · · , 𝑡, · · · ,𝑇 }. It includes a sequential process in which
the number of vehicles entering the road network gradually
increases from 0, and then all leave the road network completely.
• Action (A𝑢 ): A𝑢 = {𝑎𝑢0 , · · · , 𝑎

𝑢
𝑡 , · · · , 𝑎𝑢𝑇 } represents the set

of actions actually performed by a traffic light in the decision
cycle. 𝑎𝑢𝑡 := {0, 1} is an action performed by the signal controller
𝑢 at time 𝑡 , where 𝑎𝑢𝑡 = 0 is to maintain the current traffic phase
at time 𝑡 , 𝑎𝑢𝑡 = 1 means to switch to the phase lock stage and
then change to the next phase after the countdown ends.
• State (S𝑢 ): S𝑢 = {𝑺𝑢0 , · · · , 𝑺

𝑢
𝑡 , · · · , 𝑺𝑢𝑇 } represents the set of

traffic states observed at each time 𝑡 . Here 𝑺𝑢𝑡 is an embedding ma-
trix extracted from the dynamic graph G𝑢 and traffic features𝑿𝑢

𝑡 .
• Reward (R𝑢 ): R𝑢 = {𝑟𝑢0 , · · · , 𝑟

𝑢
𝑡 , · · · , 𝑟𝑢𝑇 } represents the set of

rewards calculated by a function of the (state, action, next state)
tuple, i.e., 𝑟𝑢 (𝑠, 𝑎, 𝑠′) = E[𝑟𝑢

𝑡+1 |𝑺
𝑢
𝑡 = 𝑠, 𝑎𝑢𝑡 = 𝑎, 𝑺𝑢

𝑡+1 = 𝑠′], and it
is predefined according to the change of queuing length at each
lane in an intersection. The total return is defined as

∑
𝑡 𝛾 · 𝑟𝑢𝑡 ,

where 𝛾 is a discount factor, 𝛾 ∈ [0, 1].
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Figure 2: The framework overview of PRLight.

• Policy (𝜋𝑢
𝜃
): 𝜋𝑢

𝜃
= 𝜋𝑢

𝜃
(𝑎 |𝑠) is a mapping from states to actions

of the 𝑢-th agent.
Based on the definitions above, we formulate the problem of the

multi-agent traffic signal control system as follows.

Problem 1. Given the directed road graph G𝑔 and the observed
traffic features𝑿𝑔

𝑡 at time 𝑡 ∈ [𝑇 ], the goal of MARL is to learn a series

of policy 𝜋Θ =

{
𝜋𝑢
𝜃
|𝑢 = 1, · · · , 𝑁

}
that maximize the total reward of

average waiting rate for all intersections in G𝑔 during timesteps [𝑇 ].

In the above problem, all agents share the same global road
graph G𝑔 and traffic features 𝑿𝑔

𝑡 . In reality, it is time-consuming
and unnecessary for each agent to process them independently. In
our paper, we use a local road graph G𝑢 ⊆ G𝑔 and its traffic features
𝑿𝑢
𝑡 to capture the local traffic information related to agent 𝑢. Then,

agent 𝑢 can use RL method to interact with the environment with
local information and updates the policy 𝜋𝑢

𝜃
over time.

3 METHODOLOGY
In this section, we first provide a framework overview of PRLight.
Then, we introduce the dynamic graph representation learning
method to capture the local traffic state information of each gent. Af-
ter that, we introduce our Online Traffic Prediction Model (OTPM),
which can assist in policy updating. Next, we demonstrate the On-
policy Traffic Control Model (OTCM), which optimizes the policy of
each agent. At last, we demonstrate the distributed training process.

3.1 Overall Framework
Figure 2 shows the overall framework, which consists of a dynamic
graph representation, an Online Traffic Prediction Model (OTPM),
and an On-policy Control Model (OTCM). The first procedure col-
lects static data (e.g., road networks and points of interest) and
dynamic data (e.g., the phases of traffic lights and road volume)
from the environment. Then, it fuses all data into a local spatiotem-
poral graph centered on the target intersectionwith high-dimension
features as the graph signal within each short period. To describe

this graph in real-time and more accurately, we introduced a fast at-
tention method for modeling. After that, OTPM takes the dynamic
traffic spatiotemporal local graph and related local features as input
and outputs predicted traffic features for a given time in the future.
To reduce the negative impact of delayed signal control actions,
OTCM uses the predicted traffic features instead of observed ones
as input and outputs the optimal action.

3.2 Dynamic Graph Representation
Following the prior practice [11], we represent the global road
network as a directed graph G𝑔 in which each lane is considered a
node 𝑣 and the upstream or downstream relationship between two
lanes is regarded as a directed edge. Formally, we define a global
road digraph as G𝑔 = {𝑽𝑔, 𝑬𝑔}, where 𝑽𝑔 = {𝑣1, · · · , 𝑣 |𝑉𝑔 | } stands
for the set of all nodes, 𝑬𝑔 = {𝑒𝑖 𝑗 : 𝑣 𝑗 is downstream of 𝑣𝑖 } is the
set of directed edges. We use 𝑿𝑔

𝑡 ∈ R |𝑽
𝑔 |×𝑚 as the𝑚-dimensional

traffic features at time 𝑡 , where each dimension represents one
traffic flow parameter, e.g., traffic flow and traffic speed. Lanes in
a path with the same path direction are treated as different nodes
with the same road traffic features. To better understand the process
of road graph representation, we demonstrate a road network with
3 intersections and a total of 13 lanes shown in Figure 3(a) and the
corresponding road digraph with 13 nodes shown in Figure 3(b).

The digraph size of G𝑔 is usually large and hard to be processed
on time. To reduce the size of the road graph, we focus on a local
view of the graph rooted by a set of nodes 𝑽𝑢 in a specific intersec-
tion 𝑢. In this local-view graph, we set up a constant 𝑛 ≤ |𝑽𝑔 | to
limit the maximum node number. We consider the lanes nearer to
intersection 𝑢 with the higher priority of joining the set 𝑽𝑢 until
|𝑽𝑢 | = 𝑛. This method captures the most important lanes to the
traffic state in intersection 𝑢. Then, we can obtain the local-view
graph G𝑢 = {𝑽𝑢 , 𝑬𝑢 } according to G𝑔 and the traffic features 𝑿𝑢

𝑡

according to 𝑿
𝑔
𝑡 . An example of a local-view graph with 𝑛 = 6 is

shown in Figure 4 for the road network shown in Figure 3(a).
With little abuse of notations, we do not demonstrate the index

of variables referring to a specific agent or intersection 𝑢 if without

675



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xiao Han, Xiangyu Zhao, Liang Zhang, & Wanyu Wang

𝑓1

𝑓4 𝑢1

𝑓3𝑓5

𝑓10𝑓2

𝑓9 𝑓11𝑢2

𝑓7

𝑓6 𝑓12 𝑓8 𝑓13

𝑢3

(a)

𝑣1
𝑣2

𝑣3

𝑣9

𝑣4𝑣10 𝑣5

𝑣7𝑣11
𝑣6

𝑣8

𝑣13
𝑣12

(b)

Figure 3: A sample of digraph representation.
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Figure 4: An example of local-view graph: This graph has a
tree-like structure centered at intersection 𝑢2, with two entry
lanes, 𝑓2 and 𝑓9, forming the root node set {𝑣2, 𝑣9}. When set-
ting 𝑛 = 6, 4 additional nodes are added including upstream
lanes 𝑓10, 𝑓1 and downstream lanes 𝑓10 and 𝑓11. The dotted line
is added between nodes that present the same lane.

a specified statement in the rest paper, e.g., we use G = {𝑽 , 𝑬} to
referG𝑢 = {𝑽𝑢 , 𝑬𝑢 } for agent𝑢 by default. Note that two connected
lanes from 𝑣𝑖 to 𝑣 𝑗 in road graph G do not indicate that the vehicles
can move through them at any time. For instance, when the traffic
light is in the red phase, the vehicles in lane 𝑣𝑖 are obstructed and
cannot move to 𝑣 𝑗 . To capture the scenarios, we define a dynamic
graph as G𝑡 = {𝑽 , 𝑬𝑡 } with the same node 𝑽 , but dynamic edges
𝑬𝑡 . Obviously, the edge 𝑒𝑖 𝑗 ∈ 𝑬 is not connected when the traffic
light is in the red phase and connected when the traffic light is in
the green phase. When the traffic light is in a countdown stage,
some vehicles may hesitate to move through the intersection or
even stop. In this case, we define this edge as partially connected.
Formally, we define the dynamic weight of edges in G𝑡 as follows:

𝑨(𝑖 𝑗 )𝑡 =


1, if 𝑡r ≥ 𝑡cd,
𝑡r/𝑡cd, if 𝑡r < 𝑡cd,
0, if 𝑒𝑖 𝑗 is in the red phase or 𝑖 = 𝑗,

(1)

where 𝑨(𝑖 𝑗 )𝑡 is the weight of edge 𝑒𝑖 𝑗 ∈ 𝑬 at time 𝑡 , and when
𝑨(𝑖 𝑗 )𝑡 = 0, we consider the link between nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 to be cut
off; 𝑡r is the remaining green time in the current phase, which is
related to the current time 𝑡 ; 𝑡cd is countdown time.

The weights of edges in Equation (1) reflect the road conditions
but not the traffic states. The traffic features between two connected
edges in G are also important for building edge relationships be-
tween two lanes. For instance, an intersection with serious traffic
jams usually takes more time to move through than that without
any vehicles. To capture the complex relationships, we use attention

mechanism [32] to update the weight of edges in G𝑡 as follows:
𝑨′𝑡 = Att(𝑸,𝑲 , 𝑽 ) = softmax(𝑸𝑲T)𝑽

=
©­«

∑𝑛
𝑗=1 𝑒

𝑞T
𝑖 𝑘 𝑗∑𝑛

𝑙=1
∑𝑛

𝑗=1 𝑒
𝑞T
𝑙
𝑘 𝑗

𝑣𝑖
ª®¬
𝑛

𝑖=1

,
(2)

where 𝑸 = Linear𝑊𝑸 (𝑿𝑡 ) ∈ R𝑛×𝑑𝑸 , 𝑲 = Linear𝑊𝑲 (𝑿𝑡 ) ∈ R𝑛×𝑑𝑸 ,
𝑽 = Linear𝑊𝑽 (𝑨𝑡 + 𝑨T

𝑡 + 𝑰𝑛) ∈ R𝑛×𝑛 , 𝑑𝑸 << 𝑛; 𝑿𝑡 is the road
traffic feature; 𝑞𝑖 , 𝑘𝑖 , 𝑣𝑖 are 𝑖-th row vectors of matrices 𝑸,𝑲 and 𝑽 .

Note that the attention mechanism applied in Equation (2) has
extremely high computational costs. If we can reduce the computa-
tional complexity of this step, it would be helpful to improve the
real-time performance of constructing a dynamic graph. Observing
Equation (2), if we could remove the SoftMax function and multiply
𝑲T and 𝑽 at first, then the computational cost could be reduced.
Thus, we propose a fast attention method shown in Theorem 1 to
substitute the 𝐴𝑡𝑡 (·) function in Equation (2).

Theorem 1. Using the Taylor expansion and a set of different
training weights𝑊 ′𝑸 and𝑊 ′𝑲 , we could rewrite Equation (2) as:

Att(𝑸 ′,𝑲 ′, 𝑽 ) ≈ 𝑸 ′ (𝑲 ′T𝑽 ) − (𝑸 ′ ⊙ 𝑸 ′)
[
(𝑲 ′T ⊙ 𝑲 ′T)𝑽

]
, (3)

where 𝑸 ′ = Linear𝑊 ′
𝑸
(𝑿 ), 𝑲 ′ = Linear𝑊 ′

𝑲
(𝑿 ), and ⊙ is the Hada-

mard product.

Proof. The proof can be found in Appendix B.1. Besides, the
numerical experiments are done in Section 4.5 to show the efficiency
of the derived formula in the theorem, and the settings of these
experiments are introduced in Appendix B.2 in detail. □

Finally, a graph convolutional layer (GCL) with ReLU activation
function 𝜎 and a dropout layer, as shown in Equation (4), is used to
learn the representation of the dynamic graph at time 𝑡 .

𝑯 𝑡 = 𝜎

(
𝑫′
− 1

2
𝑡 𝑨′𝑡𝑫

′− 1
2

𝑡 𝑿𝑡 ·𝑊GCL

)
, (4)

where 𝑫′𝑡 = diag(𝑑′
𝑖𝑖
)𝑛
𝑖=1 is the degree matrix at timestamp 𝑡 , 𝑑′

𝑖𝑖
=∑

𝑗 𝑨
′ (𝑖 𝑗 ) ,𝑊GCL is the training weight. We summarize the param-

eters in this representation as W𝐺 =

{
𝑊 ′𝑸 ,𝑊

′
𝑲 ,𝑊𝑽 ,𝑊GCL

}
. Note

that parameters W𝐺 in this subsection are shared by all agents.

3.3 Online Traffic Prediction Model
As we mentioned previously, real-world traffic control usually de-
signs a countdown stage to prevent the real-time traffic light from
suddenly changing so as to avoid traffic accidents. The countdown
stage can result in a countdown delay 𝑡cd for the effectiveness of
actual action control, which might mislead the optimization of light
control. For instance, an upstream lane may maintain the green
light to allow vehicles to pass to the downstream lane if the down-
stream is observed without any traffic jam. However, the traffic
jam might turn out after 𝑡cd/2 due to the traffic control at the next
intersection. The vehicles in the upstream lane would still enter
the downstream lane after 𝑡cd/2 time due to the countdown stage
delay. To solve this delay, we propose an online traffic prediction
model (OTPM) to predict the traffic after 𝑡cd time. The prediction
can assist in traffic control to estimate its impacts properly [29].
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Figure 5: Trends of traffic volume of adjacency roads: When
the traffic volume on the upstream road increases/decreases,
the traffic volume on the downstream road will also change
accordingly after a short period of time.

Traffic prediction is not an easy task. Firstly, there exist multiple
factors that affect the traffic state like weather, traffic jams, etc.
Secondly, due to traffic control, the traffic state of the current lane
can be changed dynamically. To solve these issues, we analyze the
traffic pattern between adjacent roads. As shown in Figure 5, we
find that their traffic patterns are highly correlated. This provides
the foundations of traffic predictions. On the other hand, we can
also observe that there exists an around 10 minutes traffic delay
between these roads. It indicates that the impact of traffic control
for the upstream lane would also have 10minutes delay. Fortunately,
the countdown time 𝑡𝑐𝑑 is usually much smaller than such delay.
This indicates that we can ignore the impacts of traffic control for
other intersections when we predict the traffic only 𝑡𝑐𝑑 time later.

In OTPM, we use the dynamic graph representation in the previ-
ous subsection to extract the complex traffic relationships among
different intersections. Then, we further use a Multi-Layer Percep-
tron (MLP) to predict short-term traffic features, shown as follows:

𝑿 ′𝑡+𝑡cd = MLP𝑊p (𝑯 𝑡 ) = 𝜎
(
Linear𝑊p (𝑯 𝑡 )

)
, (5)

where 𝜎 (·) is the ReLU function and𝑊p is the weight matrix.
To optimize the parameters in OPTM, we measure the distance

between the predicted traffic features and the ground truth. Besides,
we use regularization to avoid overfitting. Formally, we have:

arg min
W𝑃

𝐿𝑃 (W𝑃 ) = 𝐷 (𝑿 ′𝑡+𝑡cd ,𝑿𝑡+𝑡cd ;W𝑃 ) + |W𝑃 |2 + ||W𝑃 | |22, (6)

where W𝑃 =
{
W𝐺 ,𝑊p

}
and 𝐷 (·, ·) uses Euclidean Distance to

measure the Root of Mean Square Error (RMSE) loss.

3.4 On-policy Traffic Control Model
As previously mentioned, we use the MARL with 𝑁 agents to learn
the light control in the 𝑁 signal-controlled intersections. We use
the clip-Proximal Policy Optimization (clip-PPO) [26] framework
to learn the optimal policy for all agents in MARL. Then, the opti-
mization objective can be expressed as follows:

max
{𝜃 1,...,𝜃𝑁 }

E𝝅old

{
𝑁∑︁
𝑢=1

𝑓

(
𝑃𝑟𝑡

(
𝜃𝑢

)
, 𝐴𝝅old (𝑺𝑔𝑡 , 𝒂𝑡 )

)}
, (7)

where 𝒂𝑡 = {𝑎 (1)𝑡 , · · · , 𝑎 (𝑁 )𝑡 } is the joint action of all agent at time
𝑡 , 𝑺𝑔𝑡 is the global state embedding extracted from road graph G𝑔
and traffic features 𝑋𝑔

𝑡 , and

𝑓

(
𝑃𝑟𝑡

(
𝜃𝑢

)
, 𝐴𝝅old (𝑺𝑔𝑡 , 𝒂𝑡 )

)
= min

{
𝑃𝑟𝑡

(
𝜃𝑢

)
𝐴𝜋old (𝑺𝑔𝑡 , 𝒂𝑡 ), 𝑐

𝜀 (𝑃𝑟𝑡 (𝜃𝑢 ) ) 𝐴𝜋old (𝑺𝑔𝑡 , 𝒂𝑡 )
}
.

(8)

In Equation (8), the clip function 𝑐𝜀 (𝑥) restricts 𝑥 into the interval
[1−𝜀, 1+𝜀], 𝑃𝑟𝑡 (𝜃𝑢 ) =

𝜋𝑢 (𝑎𝑢𝑡 |𝑺𝑢𝑡 )
𝜋𝑢
𝑜𝑙𝑑
(𝑎𝑢𝑡 |𝑺𝑢𝑡 )

is the probability ratio for agent

𝑢, and 𝐴𝜋old (𝑺𝑔𝑡 , 𝒂𝑡 ) is estimated advantage function.
Learning the optimization objective in Equation (7) directly is

usually time-consuming. Recently, the MARL algorithm like IPPO
[6] and MAPPO [43] learn the objective for each agent separately.
Each agent in IPPO uses local observations to learn the value
function, which limits the ability to evaluate the global state. The
MAPPO adopts all global observations to estimate the value func-
tion. However, it may suffer from large amounts of computations
due to the large graph size of G𝑔 . In our OTCM, we use the global
information from local-view graph G𝑢 , which extracts the most
important information related to agent 𝑢 and alleviates the bur-
den of computations. In addition, we use the future state 𝑺′𝑢𝑡+𝑡cd
from predicted features 𝑿 ′𝑢𝑡+𝑡cd to learn the policy instead of the
current state 𝑺𝑢𝑡 to solve the countdown delay problem. Formally,
the optimization objective in OTCM for agent 𝑢 can be expressed:

max
𝜃𝑢
E𝜋𝑢

old

𝑓
©­­«
𝜋𝑢

(
𝑎𝑢𝑡 | 𝑺′

𝑢
𝑡+𝑡cd

)
𝜋𝑢old

(
𝑎𝑢𝑡 | 𝑺′

𝑢
𝑡+𝑡cd

) , 𝐴𝜋𝑢
old (𝑺𝑢𝑡 )

ª®®¬
 . (9)

To extract the state 𝑺′𝑢𝑡+𝑡cd and 𝑺𝑢𝑡 in Equation (9), we use the
dynamic graph representation module in Section 3.2. We denote
the dynamic graph representation for 𝑿 ′𝑢𝑡+𝑡cd as 𝑯

′𝑢
𝑡+𝑡cd and that

for 𝑿𝑢
𝑡 as 𝑯𝑢

𝑡 . Then, we let 𝑺
′𝑢
𝑡+𝑡cd = 𝑯 ′𝑢𝑡+𝑡cd and 𝑺𝑢𝑡 = 𝑯𝑢

𝑡 .
Based on the state, we use an MLP for the 𝑢-th agent to further

calculate the probability of each different action:

𝜋𝜃𝑢 (𝑎𝑢𝑡 |𝑺′
𝑢
𝑡+𝑡cd ) = MLP𝑊𝑢

𝑎
(𝑺′𝑢𝑡+𝑡cd ), (10)

where 𝜃𝑢 = {W𝐺 ,𝑊
𝑢
𝑎 } is the parameters of policy for agent 𝑢.

The advantage function in Equation (9) is estimated by the trun-
cated version of generalized advantage estimation (GAE) in [25],

𝐴𝑢𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + · · · + (𝛾𝜆)𝑇 𝛿𝑇 , (11)

where 𝛿𝑡 = 𝑟𝑡 +𝛾𝑉𝜔𝑢

(
𝑺𝑢
𝑡+1

)
−𝑉𝜔𝑢

(
𝑺𝑢𝑡

)
,𝑉𝜔𝑢 is the target local critic

of agent 𝑢, 𝑟𝑡 is the reward, and an MLP is used to define the critic
network:

𝑉𝜔𝑢 (𝑺𝑢𝑡 ) = 𝑀𝐿𝑃𝑊𝑢
𝑐
(𝑺𝑢𝑡 ), (12)

where 𝜔𝑢 = {W𝐺 ,𝑊
𝑢
𝑐 } is parameter set of it.

The critic function 𝑉 also needs to be updated to approach the
accurate value function. According to [7], we update each critic by
minimizing the loss function:

min
𝜔𝑢
E𝑡

[ (
𝑟𝑢𝑡 + 𝛾𝑉𝜔̄𝑢

(
𝑺𝑢𝑡+1

)
−𝑉𝜔𝑢

(
𝑺𝑢𝑡

) )2]
, (13)

where 𝑉𝜔̄𝑢 is the target state-value function and the parameters
𝜔̄𝑢 are periodically updated with the most recent 𝜔𝑢 to stabilize
learning process.
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Algorithm 1 PRLight Training Process

Input: Real-time observation 𝑿𝑡 and local-view graph G𝑢 ,
Output: parameter W𝑃 for OTPM and 𝜃𝑢 , 𝜔𝑢 for OTCM.

Global OTPM:
1: Initialize and deliver the global parameters W𝑃

2: for Each timestep 𝑡 = 1, · · · do
3: if At least one local OTPM uploads paramters then
4: Update: W𝑃 = 1

𝑍

∑
𝑢=𝑢1,· · · ,𝑢𝑍 W𝑢

𝑃
5: Deliver the global parameter W𝑃

6: end if
7: end for

Local Agent 𝑢:
8: Initialize parameters 𝜃𝑢 , 𝜔̄𝑢 , 𝜃𝑢 , 𝜔𝑢 and two buffers B𝑢

𝑃
, B𝑢

𝐶
9: for Each timestep 𝑡 = 𝑡cd, · · · do
10: Observe the real-time traffic feature: 𝑿𝑢

𝑡

11: Calculate dynamic weight A𝑢
𝑡 and graph embedding 𝑯𝑢

𝑡

12: Update buffer B𝑢
𝑃
by sample {(𝑿𝑢

𝑡−𝑡𝑐𝑑 ,A
𝑢
𝑡 ,𝑿

𝑢
𝑡 )}

Local OTPM:
13: if An update from global model then
14: W𝑢

𝑃
←W𝑃

15: end if
16: Update W𝑢

𝑃
← Training(B𝑢

𝑃
)

17: Predict 𝑿 ′𝑢𝑡+𝑡cd based on 𝑯𝑢
𝑡

OTCM:
18: Compute the future state embedding: 𝑺′𝑢𝑡+𝑡cd
19: Sample an control action 𝑎𝑢𝑡 by policy 𝜋𝜃𝑢 (𝑎𝑢𝑡 |𝑺′

𝑢
𝑡+𝑡cd )

20: Observe the next-step traffic features 𝑿𝑢
𝑡+1

21: Compute the reward: 𝑟𝑢𝑡
22: Update buffer B𝑢

𝐶
by sample {(𝑺′𝑢𝑡+𝑡cd , 𝑎

𝑢
𝑡 , 𝑟

𝑢
𝑡 )}

23: if Length(B𝑢
𝐶
) exceeds the limit then

24: Delete the oldest element
25: end if
26: Estimate the Advantage: 𝐴𝑢𝑡
27: Update actor network: 𝜃𝑢 , 𝜃𝑢
28: Update critic network: 𝜔̄𝑢 , 𝜔𝑢
29: Upload the parameter W𝑢

𝑃
30: end for
31: return trained parameters W𝑢 , 𝜃𝑢 and 𝜔𝑢

3.5 Training Process
In this subsection, we introduce the training process of the PRLight
framework, shown in Algorithm 1. We divide the training process
into two types of servers, i.e., a global server that aims to synchro-
nize the global parameters in OTPM and 𝑁 local servers which
provide distributed training process for agents. The global server
updates the global parameters W𝑃 by calculating the average of
uploaded local parameters W𝑢

𝑃
and delivers the updated global

parameter to the local server, shown in lines 1-7.
The local server for each agent maintains two buffers, i.e., B𝑢

𝑃
collecting data for training parameters in local OTPM and B𝑢

𝐶
col-

lecting samples for training the policy in OTCM.When a new traffic
feature X𝑢

𝑡 is observed, the buffer B𝑢
𝑃
is updated at first, shown in

lines 10-12. After updating the local parametersW𝑢
𝑃
in OTCM to the

latest from the global server, the agent trains the traffic prediction
model and updates the local parameters W𝑢

𝑃
, shown in lines 13-16.

Table 1: Statistics of road network datasets.

Sim XS
Total intersections 26 80

Signal-controlled intersections 4 27
Total lanes 192 504

Records of link relations 226 983
Coverage (km2) 5 10

The local OTPM then provides a prediction for the traffic feature at
𝑡cd steps later, shown in line 17. With the traffic feature prediction,
the local server updates the parameters in OTCM. The agent cal-
culates the feature state at time 𝑡 + 𝑡cd according to the predicted
traffic feature, shown in line 18. It then samples a control action and
obtains the next-step traffic features and reward, shown in lines
19-21. The buffer B𝑢

𝐶
is updated with the new sample and always

keeps the latest ones, shown in lines 22-25. Based on samples in B𝑢
𝐶
,

the agent updates the parameters in actor by maximizing Equation
(9) and that in critic by minimizing Equation (13), shown in lines
26-28. Finally, the local parameters W𝑢

𝑃
are uploaded to the global

server, shown in line 29. Note that W𝑢
𝑃
is also updated when we

update the parameters of actor 𝜃𝑢 and that of critic 𝜔𝑢 .

4 EXPERIMENTS
This section conducts extensive experiments using various road
network datasets to evaluate the effectiveness of PRLight. We first
introduce the experimental settings, then compare PRLight with
representative baselines, and then conduct ablation studies and
efficiency analysis. Finally, a case study is introduced.

4.1 Dataset
We use two traffic road networks for experiments: one is a simulated
road network (Sim), and the other is a real-world road network
(XS). The details of these datasets are listed in Table 1.

We define 4 types of vehicles running on the network: electric
bikes, cars, trucks, and buses. These vehicles have different driving
behaviors w.r.t. maximum speed, acceleration, etc. We collect aver-
age speed, traffic volume, and queue length as the features of lanes.
Note that only the signal-controlled intersection can be controlled
and optimized by an agent. We simulate a total of 26 intersections
in the Sim road network, 4 of which can be controlled by traffic
lights. As for the XS road network dataset, we use the real-wold
road network from Xiaoshan, a city in China, which consists of
80 intersections and 27 signal-controlled intersections. We collect
historical data within one month, which include 3 static features
(length, speed limit, road level) of each lane and 11 dynamic fea-
tures (average speed, occupancy rate, traffic volume, queue length,
temp, pasta, visibility, precipitation, rel-humidity, wind direction,
and wind velocity) generated every 5-6 seconds. More details about
the datasets can be found in Appendix C.1.

4.2 Experimental Settings
Baselines We compare PRLight with baselines from both conven-
tional and RL-based signal control methods, including Fixed [20],
VA [39], DynSTGAT [38], FRAP [47], Colight [34], HiLight [40],
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Table 2: Experimental results of different baselines.

Waiting Rate (%) Travel Time Loss
Sim XS Sim XS

Fixed 73.5941 36.1728 0.8551 0.5717
VA 77.3659 47.2597 0.8734 0.6772

DynSTGAT 60.1411 35.4862 0.6987 0.4989
UniLight 71.6804 44.2943 0.8092 0.5962
Colight 67.3384 38.3403 0.7328 0.5442
FRAP 65.2313 37.1411 0.7127 0.5287
HiLight 57.9878 33.1588 0.6256 0.4591
MaCAR 58.4120 32.4520 0.6594 0.4607
PRLight 55.3044* 31.4885* 0.6049* 0.4492*
“*” indicates the statistically significant improvements

(i.e., two-sided t-test with p < 0.05) over the best baseline.
For all metrics: the lower, the better.

UniLight [15] and Macar [44]. More details about these baselines
are shown in Appendix C.2. For ablation studies, we compare the
variants of PRLight to verify the effectiveness of each component.
Evaluation metrics Since each vehicle has a different driving
trajectory and destination, we prefer not to use average travel time
directly in this work. Instead, we use the metrics waiting rate and
travel time loss of the whole road network, following the studies
in the field of traffic signal control [41]. The definitions of the two
metrics are demonstrated as follows:
• Waiting Rate: It is the average percentage ratio of each vehicle’s
waiting time to its total travel time;
• Travel Time Loss: It is the average ratio of the total number of
seconds a vehicle lost due to traveling slower than expected to
this vehicle’s total travel time.

Implementation Details We have three modules in the pro-
posed framework: graph representation method, OTPM, and OTCM.
In the graph representation method, we set 𝑑𝑸 = 100, and the hid-
den dimension of the graph convolutional layer is 128. In addition,
we set the node number of a local graph 𝑛Sim = 192 for the Sim
dataset and 𝑛XS = 500 for the XS dataset. The countdown time is
set as 𝑡𝑐𝑑 = 10𝑠 by default. In OTPM, the output feature dimension
is the same as the feature dimension of 𝑋𝑢

𝑡 . The size 1000 is set for
the length of all replay buffers. As for OTCM, we set all hidden
dimensions in different layers to be 128, and the model coefficients
𝛾 = 0.99, 𝜀 = 0.2. We train the buffered sample 10 times between
every two timestamps. The rate 𝑑𝑝 = 0.5 is set for all dropout layers
in PRLight. In addition, Adam is used as the optimizer for all models,
and we use the default parameter for it, i.e., 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 10−8, 𝑙𝑟 = 10−3.

4.3 Overall Performance
The performance of all the baselines in two datasets is shown in
Table 2, in terms of the two metrics, i.e., waiting rate and travel time
loss. The performance of all methods is the average of the last 5
runs in a total of 25 runs. We can see that the conventional methods
have poor performance in the simulated dataset, i.e., Fixed and
VA. This is because traffic can be different and dynamic over time,
and these methods rely on predefined rules heavily. Once traffic
conditions change unexpectedly, these rules may all fail. However,
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Figure 6: Experimental result of different control settings.

for the real-world data, the fixed time control method outperforms
some state-of-the-art reinforcement learning-based methods, e.g.,
UniLight. The reason may be that signal timing staff set the fixed
rules according to some domain knowledge.

DynSTGAT, UniLight, FRAP, Colight, HiLight, and MaCAR are
six methods using reinforcement learning as a part of their methods.
Compared to these methods, we find that PRLight still performs the
best of them in both datasets. This is because most of them cannot
fully achieve predictive control of traffic lights, especially when
there is a 10-second countdown before the phase-change action is
applied. Among the baselines, only MaCAR can predict traffic flow
data in units of signal cycles. Note that one signal period of some
lights can exceed 150 seconds during peak hours, and some even
have 180 seconds. Compared with MaCAR, our prediction model
only needs to predict the traffic state of the road network after 10
seconds, and the accuracy of our prediction model is around 88.3%
while MaCAR is only about 85.3% under the same settings, which
means that our model is easier to be trained.

4.4 Ablation Study
The influence of countdown As mentioned previously, the
countdown stage can affect the design of the signal light control. To
demonstrate the impact of a countdown stage on control methods,
we conduct experiments on different models in the Sim dataset.
Specifically, we consider two cases: one is a traffic light with a 10s
countdown, and the other is without any countdown time. The
experimental results can be shown in Figure 6.

Figure 6(a) shows the waiting rate of models and Figure 6(b)
shows the travel time loss of models. We can observe that the exis-
tence of a countdown has little effect on the fixed-timemethod since
it always changes phases with a predefined green light time cycle
by cycle, which is also consistent with people’s general impression.
Besides, the countdown has the greatest impact on the VA method,
and the delayed signal control instructions will greatly increase the
number of vehicles queuing in the road network and increase the
time for vehicles to stop and wait at an intersection. We can also
find that the effect of a countdown on our framework, PRLight, is
second only to the fixed timing method, which is mainly due to the
fact that our scheme adopts an independent prediction model, and
the training process of the prediction model is also parallel to the
training of the traffic control model.
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Table 3: Experimental results with/without predictionmodel.

Waiting Rate Travel Time Loss
Sim XS Sim XS

with OTPM 55.3044 31.4885 0.6049 0.4492
without OTPM 58.2601 33.1007 0.6278 0.4601

The effect of OTPM To better understand the role of OTPM
in our model. We mask the output of OTPM and only use the real-
time traffic state as the input of OTCM. The results of comparison
experiments can be shown in Table 3. We can observe that the
framework’s performance drops by around 5.5% for the waiting
rate and around 4% for travel time loss. Without OTPM, the per-
formance of PRLight is similar to the performance of HiLight and
MaCAR, as shown in Table 2. OTPM is a key module for aggregat-
ing surrounding road network information and an indispensable
part of interaction with the surrounding environment in PRLight.
Therefore, PRLight without the OTPM model will be inferior to
HiLight when comparing Table 2 and Table 3.
The effect of RL methods Note that our OTCM provides a gen-
eral MARL framework, which trains each agent independently. We
adopts Clip-PPO for each agent in OTCM. Yet, other RLmethods can
be also adopted. To show the effect of different RL methods, we com-
pare our model by replacing Clip-PPO with DQN [21], REINFORCE
[36], Double Deep Q-Learning (DDQN) [31] and Actor-Critic [2]
models in the Sim dataset. The result is shown in Figure 7.
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Figure 7: Comparision of different RL models.

As shown in Figure 7, Clip-PPO performs the best in our MARL
framework for OTCM. DQN only learns an action-value function,
and DDQN separates the two operations of selecting an action
and calculating the value of an action on the basis of DQN. Both
methods only learn one action-value function. Clip-PPO extends the
policy-based methods like the Actor-Critic algorithm by limiting
the change of policy, which guarantees training stability. We also
observe that the choice of RL methods has a great impact on the
performance, but our MARL framework plays a more important
role. For example, our MARL framework with simple DQN has
performed better than two RL baselines, DynSTGAT and UniLight.
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Figure 8: Comparison of different attention methods.

4.5 Efficiency Study
Attention efficiency We propose a fast attention method to
reduce the computational cost. To verify the efficiency, we conduct
experiments on this module alone via setting the number of nodes
𝑛 = 500 and 1000, the number of feature dimensions 𝑑 = 5, 50, 100.
More detailed settings and results can be found in Appendix B.2.

In Figure 8, our proposed method shows a great improvement
over the original attention mechanism-based method. It can be
observed in Figure 8(a) that when 𝑛 gets larger, the fast attention
module takes up less average training time for every epoch. Besides,
when 𝑛 >> 𝑑 , the value of 𝑑 has a negligible effect on the results
of this experiment. On the other hand, Figure 8(b) demonstrates
that even though the fast attention method is an approximating
method, the accuracy is almost the same as the original one.

Mu
lti-
age

nt
DQ

N

PR
Lig
ht
(Or

i-G
AT
)

PR
Lig
ht
(Ou

rs)
0

200

400

600

Tr
ai
ni
ng

tim
e
(m

Se
c)

(a)

Mu
lti-
age

nt
DQ

N

PR
Lig
ht
(Or

i-G
AT
)

PR
Lig
ht
(Ou

rs)
0

500

1,000

1,500

2,000

2,500
Tr
ai
ni
ng

M
em

or
y
(M

B)

(b)

Figure 9: Training time of different models for one epoch.

Training efficiency We test the training efficiency of our PRLight
framework in XS dataset. We use the time cost for training samples
in one epoch as a metric to evaluate it. We compare our framework
with a multi-agent DQN method and PRLight with the original at-
tention mechanism, shown in Figure 9. It shows that PRLight takes
the least time to train samples in one epoch. As for the training
memory, our method can effectively reduce high memory usage
caused by the attention mechanism, shown in 9(b).
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Figure 10: Trends in waiting rates over time.

4.6 Case Study
In the case study, we take a local area of the XS road network. Since
the real-world traffic in this area is smooth most of the time, we
use simulated traffic data. We continuously add vehicles to the road
network with a fixed probability while ensuring that the ratio of
vehicles exiting over vehicles entering the road network satisfies a
Gaussian distribution. We expect to observe a change in the average
waiting rate of vehicles from a smooth state to a congested state.

Figure 10 demonstrates the overall waiting rate as the num-
ber of vehicles increases with time. Our method can effectively
reduce the average waiting rate of vehicles when compared with
Q-learning methods. When the number of vehicles becomes larger,
this phenomenon becomes more obvious. Figure 11 provides a spa-
tial visualization of the traffic state in the local area of the XS road
network at peak time 𝑡 = 12000. The red color represents the roads
that are congested, while the green color represents the roads that
are unimpeded. It shows the control result of PRLight is better than
the Q-learning-based control method. When compared with the
Q-learning-based method shown in Figure 11(a), although there
still exist congested roads in PRLight shown in Figure 11(b), the
probability of road congestion is significantly reduced, and the over-
all traffic efficiency of the road network is improved. This is mainly
because our model can predict the short-term future traffic states
from a global perspective so as to assist in the control in advance.

5 RELATEDWORK
In this section, we briefly review related traffic signal control re-
search including traditional methods and RL-based methods.

Traditional signal control methods are mainly divided into three
methods: fixed-time [20], induction control [12], and adaptive con-
trol [39]. The fixed-time method sets a fixed green light time for
each phase to give all directions of traffic an equal opportunity to
enter an intersection. Inductive control [12] detects the number of
passing vehicles and then adjusts the green light time based on it.
Adaptive signal control [39] uses man-made rules and real-time
traffic data to optimize traffic lights intelligently to meet various
control goals. The main disadvantage of these methods is that either
they cannot effectively adjust the traffic light according to road
conditions or they require a lot of human intervention.

The development of RL technology provides a new direction to
solve the above problems. Depending on the modeling philosophy
of [1, 16], it divides current RL methods into two categories: model-
based methods and model-free methods. As a model-based method,

(a) Q-Learning based control (b) Signal control with PRLight

Figure 11: Visualization of traffic state at 𝑡 = 12000.

Cahill et al. [24] propose a decentralized RL-based urban traffic
control optimization scheme that includes a nonparametric pat-
tern change detection mechanism to identify local traffic patterns.
Khamis et al. [17] develop a multiagent traffic light control system
based on a multi-objective sequential decision-making framework.
The model-based methods require the transition probability of the
traffic environment, which is usually difficult to obtain due to the
complex traffic trends and people’s driving behavior. As for model-
free methods, Nishi et al. [22] develop an RL-based traffic signal
control method that employs a graph convolutional neural network.
Chu et al. [4] develop a fully scalable and decentralized MARL al-
gorithm for the advantage actor-critic (A2C) within the context
of adaptive traffic signal control. Wei et al. [35] propose a more
effective deep reinforcement learning model for traffic light control
based on a large-scale real traffic dataset obtained from surveil-
lance cameras. However, all these model-free methods neglect the
impacts of a countdown, which limit their performances.

6 CONCLUSION
In this paper, a novel framework called PRLight is proposed to
address the problem of action hysteresis in traffic signal control.
Specifically, our framework can be divided into three important
modules, i.e., the dynamic graph representation module, OTPM for
short-term prediction, and OTCM for signal control. In the dynamic
graph representation module, we proposed a novel attention-based
graph network to capture the information from dynamic graphs
fastly. In OTPM, we provided the short-term prediction for traffic
features to assist in solving action hysteresis issues. In OTCM, we
proposed a novel MARL framework, which adopts a distributed
training approach without scarifying the global view. We would
like to improve the generalization of our PRLight to apply in more
real-word scenarios with missing and abnormal data in the future.
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A NOTATIONS
We summarize all notations in this paper and list them in Table 4.

Table 4: Notations in this paper.

Notation Description
G𝑡 Dynamic graph at time 𝑡
𝑽 𝑡 Local node set at time 𝑡
𝑣𝑖 Node 𝑖
𝑬 Edge set at time 𝑡
𝑒𝑖 𝑗 An direct edge from node 𝑖 to node 𝑗
𝑁 Total number of signal-controlled intersections
𝑛 Number of nodes in a local graph
𝑚 Number of traffic features
𝑡 Time step in real-world
𝑨𝑡 𝑛 × 𝑛 adjacency matrix at time 𝑡
𝑫𝑡 𝑛 × 𝑛 degree matrix at time 𝑡
𝑿𝑡 𝑛 ×𝑚 feature matrix at time 𝑡
A𝑢 Action set for agent 𝑢
𝑎𝑡 Action at time 𝑡
S𝑢 State set for agent 𝑢
𝑺𝑡 State embedding with dimension 𝑘 at time 𝑡
R𝑢 Reward set for agent 𝑢
𝑟𝑡 Reward value at time 𝑡
𝑟 (·) Reward function
𝜋𝜃 Policy under with parameter 𝜃

𝑨(𝑖 𝑗 )𝑡 The weight of the edge 𝑒𝑖 𝑗
𝑡cd Count down time
𝑡r Rest time of green phase
B𝑢
𝑃

Historical traffic sample set for agent 𝑢
B𝑢
𝐶

Replay buffer for agent 𝑢
𝑲&𝑸&𝑽 Embedding matrices for attention mechanism
W𝑃 OTPM’s total training parameters
𝜃&𝜔 OTCM’s total training parameters

B MODEL SPECIFICATION
B.1 Derivation of Equation (3)
First, we take Taylor expansion for 𝑒𝑞

𝑇
𝑖
𝑘 𝑗 : 𝑒𝑞

𝑇
𝑖
𝑘 𝑗 = 1 + 𝑞𝑇

𝑖
𝑘 𝑗 +

(𝑞𝑇
𝑖
𝑘 𝑗 )2
2! + · · · and we use the first three terms of it to approximation

Equation (2):

Att(𝑞, 𝑘, 𝑣) ≈
1 + 𝑞T𝑘 + 1

2

(
𝑞T𝑘

)2∑
1 + 𝑞T𝑘 + 1

2
(
𝑞T𝑘

)2 𝑣, (14)

For symbolic simplicity, we define𝑥 := 𝑞T𝑘 , andwe haveAtt(𝑞, 𝑘, 𝑣)
≈ 1+𝑥+1/2𝑥2∑

1+𝑥+1/2𝑥2 𝑣 .
Then for a set of fixed 𝑥 , we can regard Equation (14) as a process

of averaging 𝑣 with 1 + 𝑥 + 1/2𝑥2 as weight and the denominator
a constant normalization coefficient 𝑐 . Defining a scaling function
𝑓 (𝑥) = 1 − 𝑐𝑥−1, 𝑦 > 0 and letting 𝑥 ′ := 𝑞′T𝑘′, we have

Att(𝑞′, 𝑘′, 𝑣) ≈
(
1 − 1

1 + 𝑥 ′ + 𝑥 ′2

)
𝑣, (15)

After that, we replace 1/(1 + 𝑦), 𝑦 := 𝑥 ′ + 𝑥 ′2 by the first two
terms of Taylor expansion with respect to 𝑦. The left-hand-side
of Equation (15) now is to be

(
𝑥 ′ + 𝑥 ′2

)
𝑣 . Finally, we write it in a

matrix form:

Att(𝑸 ′,𝑲 ′, 𝑽 ) ≈ 𝑸 ′𝑲 ′T𝑽 − (𝑸 ′ ⊙ 𝑸 ′) (𝑲 ′T ⊙ 𝑲 ′T)𝑽 , (16)

which is the same as Equation (3).

B.2 Detailed Settings for Numerical
Experiments of Attention Module

The node features are generated by Gauss distribution (So the met-
ric of accuracy is only used to compare whether there is a difference
between two models). We use an Encoder-Decoder framework to
test the newly proposed attention mechanism, as shown in Equa-
tion (17).

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 = Encoder(Att(𝑄,𝐾,𝑉 )),
𝑂𝑢𝑡𝑝𝑢𝑡 = Decoder(Att(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔, 𝐾,𝑉 )), (17)

where 𝑸 ′ = Linear𝑊 ′
𝑸
(𝑿 ), 𝑲 ′ = Linear𝑊 ′

𝑲
(𝑿 ), 𝑽 = Linear𝑊𝑽 (𝑿 ).

B.3 Definition of Reward Function in Section 3.4
In this paper, we define the reward as a piecewise judgment function
𝑟𝑢 := 𝑟𝑢 (𝑺𝑡 , 𝑺𝑡+1) for an agent 𝑢 at the corresponding intersection
with 𝑧𝑢 lanes. It is the sum of two parts: the mean value of the
lane-level rewards of the current green light phase, and the mean
value of the lane-level rewards of corresponding to the next green
light phase.

𝑟 = 𝑟g + 𝑟ng =
1
𝑥

𝑥∑︁
𝑖=1

𝑟
g
𝑖
+ 1
𝑦

𝑦∑︁
𝑖=1

𝑟
ng
𝑖
, (18)

where 𝑥 is the number of lanes in the current green light phase,
𝑦 is the number of lanes in the next green light phase, 𝑟g

𝑖
and 𝑟ng

𝑖
are two piecewise judgment functions defined in Equation (19) and
(20).

𝑟
g
𝑖
= 𝛾 +



−40 if 𝑶 (𝑖 )
𝑡+1 ≤ 𝐿,𝑶

(𝑖 )
𝑡 ≤ 𝐿,

−20 if 𝑶 (𝑖 )
𝑡+1 > 𝐿,𝑶 (𝑖 )𝑡 ≤ 𝐿,

10 + 𝛽 if 𝑶 (𝑖 )
𝑡+1 ≤ 𝐿, 𝐿 < 𝑶 (𝑖 )𝑡 ≤ 𝐻,

25 + 𝜅 if 𝑶 (𝑖 )
𝑡+1 ≤ 𝐿,𝑶

(𝑖 )
𝑡 > 𝐻,

40 if 𝑶 (𝑖 )
𝑡+1 > 𝐻,𝑶 (𝑖 )𝑡 > 𝐻,

0 otherwise,

(19)

and

𝑟
𝑛𝑔

𝑖
=



40 if 𝑶 (𝑖 )𝑡 ≤ 𝐿,𝑶 (𝑖 )
𝑡+1 ≤ 𝐿,

20 if 𝑶 (𝑖 )𝑡 > 𝐿,𝑶 (𝑖 )
𝑡+1 ≤ 𝐿,

−10 − 𝛽 if 𝑶 (𝑖 )𝑡 ≤ 𝐿, 𝐿 < 𝑶 (𝑖 )
𝑡+1 ≤ 𝐻,

−25 − 𝜅 if 𝑶 (𝑖 )𝑡 ≤ 𝐿,𝑶 (𝑖 )
𝑡+1 > 𝐻,

−40 if 𝑶 (𝑖 )𝑡 > 𝐻,𝑶 (𝑖 )
𝑡+1 > 𝐻,

0 otherwise.

(20)

In both Equation (19) and (20), 𝐿 and 𝐻 are two threshold coeffi-
cients, 𝐿 = 0.3 and 𝐻 = 0.7, 𝑶 (𝑖 )𝑡 is the time occupancy (Toc) [8] of
lane 𝑖 at time 𝑡 ; 𝛽 and 𝜅 are two congestion penalty factors: if 𝑶 (𝑖 )𝑡

is the maximum value in Equation (19) (or the minimum value in
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Equation (20)) among all 𝑶 ( 𝑗 )𝑡 , 𝑗 = 1, · · · , 𝑧𝑢 , then 𝛽 = 10 and 𝜅 = 5.
Otherwise, 𝛽 = 𝜅 = 0. Besides, 𝛾 is a deadlock penalty factor:

𝛾 =

{
−5 if 𝑶 (𝑖 )

𝑡+1 > 𝐻,𝑶 ( 𝑗 )
𝑡+1 > 𝐻,

0 otherwise,
(21)

where 𝑗 is the downstream lane of 𝑖 .

C SIMULATION DETAIL
C.1 Dataset Detail
This paper utilizes two road network datasets, which are visual-
ized in Figure 12. As for the simulated (Sim) road network, we
constructed a backbone road network with a well-shaped structure
and added a small number of branches on the basis of it.

(a) Sim road network (b) XS road network

Figure 12: Road networks for experiments.

C.2 Baselines Detail
The details of baseline methods used in this paper are described as
follows:
• Fixed [20] This method uses fixed cycle time and phase time
at each intersection for signal control. In this experiment, we
configure a distinct timing plan at each intersection for the sim-
ulated dataset. We use a real-world traffic timing schedule for
the Xiaoshan dataset. It has a 3-6 sub-fixed timing plan for one
intersection during a day that is adjusted artificially by signal
timing staff.
• VA (Vehicle Actuated) [39] This method collects real-time
data of queuing vehicles at intersections and mainly uses the
longest queue first algorithm for signal control.
• DynSTGAT [38] This method adequately exploits the joint
relations of spatiotemporal information by using a multi-head
graph attention mechanism and efficiently utilize the historical
state information of the intersection by designing a sequence
model with the temporal convolutional network.
• FRAP [47] This method adopts an Ape-X DQN-based dis-
tributed framework for traffic signal control, which can converge
much faster than existing RL methods during the learning pro-
cess.

• Colight [34] This method first uses graph attentional net-
works in the setting of Q-learning for large-scale traffic signal
control.
• UniLight [15] This method first sets up a universal commu-
nication form between intersections, which embeds massive ob-
servations collected at one agent into crucial predictions of their
impact on its neighbors, and then uses Q-Learning to make full
use of these communications.
• HiLight [40] This method combines two reinforcement learn-
ing methods, i.e., Deep Q-Learning (DQN) & clip-Proximal Policy
Optimization (clip-PPO), to control traffic lights. DQN is used
to deal with different control targets such as travel time and
then extract the sub-policies. PPO is used for selecting a specific
sub-policy to control each traffic light directly.
• Macar [44] This method uses an Actor-Critic algorithm com-
binedwith amessage propagation graph neural network (MPGNN)
based agent communication method for traffic signal control,
which helps to rectify action against bias.

C.3 Simulation Environment
Our experimental platform is based on the open-source software,
SUMO 2, for secondary development, and is deployed in a Linux
server with two Intel(R) Xeon(R) Gold 6248R CPUs, eight NVIDIA
TESLA V100 32G graphics cards and 800G memory. In this experi-
ment, the signal control models in all signal machines in the road
network are trained and calculated in parallel, and we limit each
signal control model only to use an independent CPU thread to
simulate the limited computing resources of the roadside units
(RSUs).

C.4 Testing Process

Algorithm 2 PRLight Testing Process

Input: Trained parameter W𝑢
𝑃
for OTPM, trained parameter 𝜃𝑢

for OTCM, real-time observation 𝑿𝑢
𝑡 and local-view graph G𝑢 .

Output: Real-time action 𝑎𝑢𝑡 for traffic signal control.
Local Agent 𝑢:

1: Observe the real-time traffic feature: 𝑿𝑢
𝑡

2: Calculate dynamic weight A𝑢
𝑡 and graph embedding 𝑯𝑢

𝑡

3: Predict 𝑿 ′𝑢𝑡+𝑡cd based on 𝑯𝑢
𝑡

4: Compute the future state embedding: 𝑺′𝑢𝑡+𝑡cd
5: Sample an control action 𝑎𝑢𝑡 by policy: 𝜋𝜃𝑢 (𝑎𝑢𝑡 |𝑺′

𝑢
𝑡+𝑡cd )

6: return 𝑎𝑢𝑡 to the traffic signal machine for signal control

As an extension to section 3.5, this section continues to introduce
the testing process of the framework. During the testing period,
we have the trained parametersW𝑃 , 𝜃𝑢 , 𝜔𝑢 . Then for an agent 𝑢,
we apply OTPM and OTCM to calculate an action 𝑎𝑢𝑡 by giving the
real-time observation 𝑋𝑢

𝑡 and 𝐴𝑢𝑡 , as shown in Algorithm 2.

2https://www.eclipse.org/sumo/
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