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Abstract
Visual geo-localization demands in-depth knowledge and advanced
reasoning skills to associate images with precise real-world geo-
graphic locations. Existing image database retrieval methods are
limited by the impracticality of storing sufficient visual records of
global landmarks. Recently, Large Vision-LanguageModels (LVLMs)
have demonstrated the capability of geo-localization through Vi-
sual Question Answering (VQA), enabling a solution that does not
require external geo-tagged image records. However, the perfor-
mance of a single LVLM is still limited by its intrinsic knowledge and
reasoning capabilities. To address these challenges, we introduce
smileGeo, a novel visual geo-localization framework that lever-
ages multiple Internet-enabled LVLM agents operating within an
agent-based architecture. By facilitating inter-agent communica-
tion, smileGeo integrates the inherent knowledge of these agents
with additional retrieved information, enhancing the ability to ef-
fectively localize images. Furthermore, our framework incorpo-
rates a dynamic learning strategy that optimizes agent commu-
nication, reducing redundant interactions and enhancing overall
system efficiency. To validate the effectiveness of the proposed
framework, we conducted experiments on three different datasets,
and the results show that our approach significantly outperforms
current state-of-the-art methods. The source code is available at
https://github.com/Applied-Machine-Learning-Lab/smileGeo.

CCS Concepts
• Information systems→Multimedia information systems; •
Computing methodologies→ Intelligent agents.
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1 Introduction
Visual geo-localization, referred to the task of estimating geograph-
ical identification for a given image, is vital in various fields, such
as analyzing historical human mobility patterns [13, 16, 28, 48] and
providing location-aware, city-level attraction recommendations
[5, 11, 15, 23]. In general, accurately geo-localizing images without
relying on localization-based metadata (e.g., GPS tags) is a complex
task that demands extensive geospatial knowledge and advanced
reasoning capabilities. Traditional methods [4, 6, 8, 49] typically
formulate it as an image retrieval problem where to geo-localize the
given image by retrieving similar images with known geographi-
cal locations. Thus, their effectiveness is limited by the scope and
quality of the geo-tagged image records.

A straightforward approach to mitigate the limitation of these
databases is to deploy an agent-based framework, leveraging swarm
intelligence across multiple retrieval systems [3, 35]. However, in-
tegrating diverse and independent traditional retrieval systems as
agents within a unified framework presents significant challenges
without human intervention. For instance, as illustrated in Figure 1,
two distinct retrieval systems may provide different answers for
the same input image, making it difficult to decide on the correct
response without third-party mediation. This challenge highlights
the inherent difficulty of coordinating independent systems within
a swarm intelligence framework.

In parallel with agent-based approaches, recent advancements in
Large Vision-Language Models (LVLMs) have opened up new pos-
sibilities for multi-modal tasks, such as Visual Question Answering
(VQA) [9, 41]. LVLMs offer an innovative solution to visual geo-
localization without relying on external geo-tagged image records.
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        Where is the location of this picture?

  Heng Dian World 
Studios, Jinhua, Zheji-
ang Province, China.

       Yuanmingyuan ruins, 
Beijing, China.

}       I’m correct.

       I’m the only one who’s right.

Which answer 
should I choose?

Figure 1: A toy example in the traditional agent-based re-
trieval framework.

Additionally, enabling LVLMs to autonomously query network
search interfaces for information retrieval can further enhance their
capabilities [45]. However, while individual LVLMs possess strong
reasoning abilities, they still struggle with fine-grained recognition
across diverse and complex scenes [20, 26, 46].

To address the limitations of both traditional retrieval systems
and individual LVLMs, we propose a novel multi-LVLM agent frame-
work, named swarm intelligence Geo-localization (smileGeo). It
leverages the swarm intelligence of multiple LVLMs, each equipped
with network retrieval capabilities, to collaboratively and efficiently
geo-localize images. Specifically, for a given image, the framework
initially selects 𝐾 appropriate LVLM agents to serve as answer
agents responsible for conducting the initial location analysis. Then
multiple review agents are assigned to each answer agent through
an adaptive social network, simulating the collaborative relation-
ships between agents, to refine its analysis within the visual geo-
localization task. Following this, the framework facilitates open
discussions among all answer agents to reach a consensus. How-
ever, as the number of agents grows, managing these discussions
can become increasingly chaotic. Therefore, we introduce a novel
dynamic learning strategy to optimize the agent election mech-
anism and adaptive collaboration network. By refining both the
election and review processes, our framework seeks to discover
the most effective communication patterns among agents, thereby
improving geo-localization performance through collaborative rea-
soning while minimizing unnecessary discussions. In summary, our
contributions are demonstrated as follows:
• We propose a novel framework, smileGeo, that adaptively inte-
grates both the inherent and retrieved knowledge, along with the
reasoning capabilities of LVLMs, through structured discussions
for visual geo-localization tasks.
• We introduce a dynamic learning strategy to identify the most ef-
fective communication patterns among LVLM agents, enhancing
both effectiveness and efficiency.
• We conducted experiments on two open-source datasets. To ad-
dress the issue of numerous images (food, furniture, etc.) in these
datasets that could not be localized, we also constructed a new
dataset for further evaluation. Extensive experimentation demon-
strates that smileGeo achieves competitive performance com-
pared to state-of-the-art methods.

2 Methodology
In this section, we first present the overall framework and then
introduce each part of smileGeo in detail for geo-localization tasks.

2.1 Model Overview
In this paper, we denote the social network of LVLM agents by G,
where G = {V, E}.V stands for the agent set and E presents the
set of edges. Each agent 𝑣𝑖 ∈ V, 𝑖 ∈ [𝑁 ] is an LVLM, which is pre-
trained by massive vision-language data and can infer the possible
location 𝒀 of a given image𝑿 . Besides, each edge 𝑒𝑖 𝑗 ∈ E, 𝑖, 𝑗 ∈ [𝑁 ]
is the connection weighted by the improvement effect of agent 𝑣𝑖 to
agent 𝑣 𝑗 via discussion regarding the geo-localization performance.

As illustrated in Figure 2, smileGeo contains the process of the
review mechanism in agent discussions along with a dynamic learn-
ing strategy of agent social networks. In this framework, the review
mechanism in agent discussions is a 3-stage anonymous collabora-
tion approach to allow retrieval-augmented LVLM agents to reach
a consensus via discussion:

In the first stage, for a given image 𝑿 , our proposed framework,
smileGeo, elects 𝐾 suitable agents as answer agents by agent elec-
tion probability 𝑳𝒔𝒕 := {𝑃𝑣1 , 𝑃𝑣2 , · · · }, where 𝑃𝑣𝑖 is the probability
of selecting agent 𝑣𝑖 .

In the second stage, these answer agents respectively select 𝑅
review agents by the adaptive collaboration social network𝑨, which
is the adjacency matrix generated from G dynamically, to refine
their answer via discussion.

In the third stage, our proposed framework facilitates consensus
among all agents through open discussion to reach a final answer.
Both 𝑳𝒔𝒕 and 𝑨 are analyzed from the given image 𝑿 , allowing
our framework to minimize unnecessary discussions, thereby sig-
nificantly enhancing its efficiency while maintaining its accuracy.
Moreover, the multi-stage discussion facilitates communication
among agents, maximizing the integration of their knowledge and
reasoning abilities to generate an accurate response 𝒀 .

To get 𝑳𝒔𝒕 and𝑨, we specifically design a dynamic learning mod-
ule in parallel with the aforementioned 3-stage discussion, which
initially deploys the encoder component of a pre-trained image
variational autoencoder (VAE) to extract features from the given
image 𝑿 . The extracted features, combined with learnable agent
embeddings 𝑬𝒎𝒃 , are employed through a GNN-based module to
determine the suitability of agents w.r.t, 𝑳𝒔𝒕 for agent discussions
and predict suitable agent collaboration connections 𝑨 according
to the given geo-localization query.

2.2 Review Mechanism in Agent Discussions
LVLM have demonstrated remarkable capabilities in complicated
tasks and some pioneering works have further proven that the per-
formances can be further enhanced by ensembling multiple LVLM
agents [7, 21, 26, 39, 50]. Thus, to improve the geo-localization
capability of LVLMs, we propose a cooperation framework to effec-
tively integrate the diverse knowledge (including external retrieved
information) and reasoning abilities of multiple LVLMs. Inspired
by the fact that community review mechanisms can improve the
quality of manuscripts, an iterative 3-stage anonymous reviewing
mechanism is proposed for helping agents share knowledge and
reasoning capability with each other through their collaboration
social network: i) answer agent election & answering, ii) review
agent selection & reviewing, and iii) final answer conclusion.
Stage 1: Answer Agent Election & Answering
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Dynamic Learning Strategy of Agent Collaboration Social Networks

Review Mechanism in Agent Discussions

Stage 1 
Answer Agent Election & Answering

Stage 2
Review Agent Selection & Reviewing

Stage 3
Final Answer Conclusion

It’s located in ...A!

       Some one says it’s located  ...

I agree ...R!! I disagree ...R!"

      Here are others’ comments:
(1) ...            (2) ...

 What do you think?

     Please answer the location by this format 
<location> <confidence> <explain>...

In summary, ...Y
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A"
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Figure 2: The framework overview of smileGeo. It contains the process of review mechanism in agent discussions along with a
dynamic learning strategy of agent collaboration social networks. The first part deploys a review mechanism for LVLMs to
discuss and share their knowledge anonymously, which could enhance the overall performance of geo-localization tasks. The
second one mainly utilizes the GNN-based learning module to improve efficiency by reducing unnecessary discussions among
agents while showing the process of updating the agent collaboration social network during the training process.

Initially, we select 𝐾 agents with the highest agent election prob-
abilities 𝑳𝒔𝒕 as answer agents and let them geo-localize indepen-
dently as the preliminary step for further discussion. By initiating
the discussion with a limited number of agents, we aim to reduce
potential chaos and maintain the efficiency of our framework as
the number of participating agents increases.

After the answer agents are elected, we send the image 𝑿 to all
answer agents and let them give the primary analysis. Each answer
must contain three parts: one location (city, country, and so on),
one confidence (a percentage number), and a detailed explanation.
Besides, if an agent is unable to interpret the given image, it is
permitted to utilize a combination of network search and chain-of-
thought reasoning [44] to gather additional relevant information.
Stage 2: Review Agent Selection & Reviewing

In this stage, for each answer agent, we choose 𝑅 retrieval-
augmented review agents by performing a transfer-probability-
based random walk on the agent collaboration social network G
for answer reviewing. The transfer probability 𝑝 (𝑣𝑖 , 𝑣 𝑗 ) from node
𝑣𝑖 to node 𝑣 𝑗 can be calculated as follows:

𝑝 (𝑣𝑖 , 𝑣 𝑗 ) =
{ 𝑨𝑖 𝑗∑

𝑘∈N(𝑣𝑖 ) 𝑨𝑖𝑘
, if 𝑒𝑖 𝑗 ∈ E,

0, otherwise,
(1)

where N(𝑣𝑖 ) is the 1-hop neighbor node set of node 𝑣𝑖 .
For each selected review agent, it reviews the results as well

as the explanations generated by the corresponding answer agent
and gives its own comments. After that, each answer agent would
summarize their preliminary analysis and the feedback from all of
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its review agents to get the final answer, which must include three
parts as well: one location, one confidence, and an explanation.
Stage 3: Final Answer Conclusion

In the previous stage, each answer agent produces a refined
result based on feedback. When 𝐾 > 1 in Stage 1, the proposed
framework generates multiple independent results, which may not
be consistent. However, we aim to provide a definitive answer rather
than multiple options for people to choose from. To address this,
we allow up to 𝑍 rounds of free discussion among those answer
agents to reach a unified answer:

First, we maintain a global dialog history list, 𝑑𝑖𝑎𝑔, recording
all replies agents respond. In addition, discussions are executed
asynchronously, which means that any answer agent can always
reply based on the latest 𝑑𝑖𝑎𝑔, and replies would be added to the end
of 𝑑𝑖𝑎𝑔 as soon as they are posted. Each answer agent is allowed to
speak only once in each discussion round, and after𝑍 rounds of free
discussion, we determine the final result using a minority-majority
approach, i.e., we choose the reply with the most agreement as
the final conclusion. If all agents reach a consensus (or when the
conclusion of the majority of agents is clearly dominant), we early
stop this stage and adopt the consensus answer as the final answer.
If none of any consensus is reached, we only select the reply of the
first answer agent elected from Stage 1 as the final result.

2.3 Dynamic Learning Strategy of Agent
Collaboration Social Networks

In our framework, choosing the appropriate answer agents and
review agents for knowledge sharing and discussion is vital to
its effectiveness and efficiency. Therefore, we propose a dynamic
learning strategy to optimize them. Specifically, for each training
sample, i.e., a geo-tagged image, we would first estimate the optimal
answer agent election probability ˆ𝑳𝒔𝒕 and the optimal collaboration
social network of agent Ĝ by its actual location. Then we train an
attention-based graph neural network, which aims to predict 𝑳𝒔𝒕
and G, by such estimated ground truth.

To estimate the optimal ˆ𝑳𝒔𝒕 and 𝑨̂ for agents to geo-localize
image 𝑿 , we first initialize the agent social network G (0) by a fully
connected graph with the agent set V . Besides, we initialize the
agent election probability 𝑳𝒔𝒕 (0) = [0.5, 0.5, · · · ], with all agents
having 50% probability of being chose as answer agents.

Then, we iteratively conduct our 3-stage discussion framework
to get the prediction answer. 𝑳𝒔𝒕 (𝑙 ) and G (𝑙 ) is updated at the end
of each round 𝑙 ∈ 𝐿 by comparing the answers 𝒀 (𝑙 )𝑣𝑖 from each
answer agent with the ground truth 𝒀̂ .

After 𝐿 rounds of agent discussions, the updated agent election
probability for an image𝑿 , ˆ𝑳𝒔𝒕 := 𝑳𝒔𝒕 (𝐿) (𝑿 ) = [𝑃 (𝐿)𝑣1 , 𝑃

(𝐿)
𝑣2 , · · · , 𝑃 (𝐿)𝑣𝑁 ],

determines whether an agent 𝑣𝑖 gives the correct/wrong answers
𝒀 (𝐿)
𝑣𝑖

by comparing it with the ground truth 𝒀̂ . Here, the definition
of 𝑃 (𝑙 )𝑣𝑖 of agent 𝑣𝑖 at round 𝑙 is as follows:

𝑃
(𝑙 )
𝑣𝑖 :=


0, if D(𝒀̂ , 𝒀 (𝑙 )𝑣𝑖 ) > 𝑡ℎ,
1, if D(𝒀̂ , 𝒀 (𝑙 )𝑣𝑖 ) ≤ 𝑡ℎ,
1
2 , if 𝑣𝑖 did not participate in the discussion,

(2)

where 𝑡ℎ is a pre-defined threshold for determining whether the
predicted location is close enough to the actual location. In the
distance functionD(·), we first deploy geocoding to convert natural
language into location intervals in a Web Mercator coordinate
system (WGS84) by utilizing OSM APIs, and then compute the
shortest distance between two two location intervals.

Please note that, rather than electing the top-𝐾 answer agents
in each round, we choose each agent with probability 𝑃𝑣𝑖 during
the training period to ensure that every agent has the opportunity
to participate in the discussion for more accurate estimation, as
shown at the left part of the dynamic learning strategy module of
agent collaboration social networks in Figure 2.

In addition, the agent collaboration social network would also
be updated by comparing the actual location with the generated
answer of each answer agent at the same time. For 𝑙-th round, we
strengthen the link between the correctly answered agent and the
corresponding review agents while weakening the link between the
incorrectly answered agent and the corresponding review agents:

𝑨̂𝑖 𝑗 := 𝑨(𝑙 )
𝑖 𝑗
(𝑿 ) =

{
𝑡𝑡+1
2𝑡𝑡 𝑨(𝑙−1)

𝑖 𝑗
(𝑿 ), if 𝑣𝑖 answers correctly,

2𝑡𝑡−1
2𝑡𝑡 𝑨(𝑙−1)

𝑖 𝑗
(𝑿 ), if 𝑣𝑖 answers incorrectly,

(3)
where 𝑨(𝑙−1)

𝑖 𝑗
(𝑿 ) is the weight of the connection between answer

agent 𝑣𝑖 and review agent 𝑣 𝑗 at round 𝑙−1 when geo-locating image
𝑿 , 𝑨(0)

𝑖 𝑗
(𝑿 ) = 1, 𝑖 ≠ 𝑗,𝑨(0)

𝑖𝑖
(𝑿 ) = 0, 𝑖, 𝑗 ∈ [𝑁 ], 𝑡𝑡 is the number of

consecutive times an agent has answered correctly, which is used to
attenuate the connection weights when updating them, preventing
the performance of an agent on a certain portion of the continuous
dataset from interfering with the model’s evaluation of the current
agent’s performance on the entire dataset.

Then, we try to learn an attention-based graph neural network
to predict the corresponding optimal agent election probability
𝑳𝒔𝒕 = ℎ(𝑿 ,G|Θ) and the optimal agent collaboration connections
𝑨 = 𝑓 (𝑿 ,V|Θ):

𝑨 = AttGNN (𝑭 𝒆𝒂, 𝑭 𝒆𝒂, 1)

= softmax

(
𝑭 𝒆𝒂 · 𝑭 𝒆𝒂⊤√︁

𝑑𝑘

)
1,

𝑳𝒔𝒕 = 𝜎′ (Linear (Flatten (𝜎 (𝑨 · 𝑭 𝒆𝒂 ·𝑾 )))) ,
𝑭 𝒆𝒂 = Linear (𝑬𝒎𝒃 + VAEEnc (𝑿 )) ,

(4)

where𝑾 , 𝑬𝒎𝒃 ∈ Θ are two learnable parameters, 𝑬𝒎𝒃 := [𝑬𝒎𝒃𝑣1 ,
𝑬𝒎𝒃𝑣2 , · · · ]⊤ is the agent embedding and 𝑾 is the weight ma-
trix, 𝜎 (·) is the LeakyReLU function, 𝜎′ (·) is the Sigmoid function,
VAEEnc (·) is the encoder of the image VAE that compresses and
maps the image data into the latent space. It is used to align the
image features with the agent embedding, and 𝑑𝑘 is the dimension
of the 𝑭 𝒆𝒂. Our learning target can be formalized as:

argmin
Θ

𝑁∑︁
𝑖

D(𝒀̂ , 𝒀 𝑣𝑖 )1(𝑣𝑖 gives an answer)

+MSE( ˆ𝑳𝒔𝒕, 𝑳𝒔𝒕) +MSE(𝑨̂,𝑨),
(5)
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where D(·) denotes the distance between the places an LVLM
agent answered and the ground truth, 1(·) is the indicator function,
𝒀 𝑣𝑖 := 𝒀 (𝐿)𝑣𝑖 = 𝑔𝑣𝑖 (𝑿 , 𝒀

(𝐿−1)
𝑣𝑗 ), 𝑔𝑣𝑖 (·) represent the LVLM agent 𝑣𝑖

with fixed parameters and 𝒀 (0)𝑣𝑖 = 𝑔𝑣𝑖 (𝑿 ) is the answer that LVLM
agent 𝑣𝑖 generates at the initial stage of discussion.

3 Experiments
To evaluate the performance of our framework, we conducted ex-
periments on the real-world dataset that was gathered from the
Internet to answer the following research questions:
• RQ1: Can the proposed framework, smileGeo, outperform state-
of-the-art methods in open-ended geo-localization tasks?
• RQ2: Are LVLMs with diverse knowledge and reasoning abilities
more suitable for building a collaborative social network of agents?
• RQ3: How efficient is smileGeocompared to other baselines?
• RQ4: How does the setting of different hyperparameters affect
the performance of smileGeo?

3.1 Experiment Setup
Datasets. In this paper, we first evaluate the proposed geo-localization
framework, smileGeo, on the two open-source datasets: IM2GPS3K1
and YFCC4K2:

The IM2GPS3K dataset is a widely used benchmark for visual
geo-localization. It consists of 3,000 images from the Flickr photo-
sharing platform, which are tagged with precise geographical co-
ordinates. The dataset covers a diverse range of locations globally,
including urban, rural, and natural environments, making it an
ideal testbed for assessing the generalization capabilities of geo-
localization models. The images in IM2GPS3K are drawn from
various categories, such as landscapes, cityscapes, and landmarks,
providing a challenging and diverse set of visual cues that the mod-
els must recognize to predict the geographical location accurately.

The YFCC4K dataset is a subset of the larger Yahoo Flickr Cre-
ative Commons 100 Million (YFCC100M) dataset, which contains
over 100 million Flickr images. The YFCC4K subset includes 4,536
images with corresponding geographical tags, selected to repre-
sent a broad geographic distribution and visual diversity. Like
IM2GPS3K, YFCC4K includes a variety of image types, such as
natural landscapes, urban settings, and iconic landmarks. This di-
versity allows for comprehensive evaluation of geo-localization
models across different environments and scales, from global-level
to city-level localization tasks.

Noting that the labels in the above two datasets are latitude-and-
longitude-based GPS points rather than natural language, we use
geo-reverse encoding technology to map GPS points into detailed
and structured addresses for evaluation.

In addition,We have newly constructed a geo-localization dataset
named GeoGlobe3. It contains a variety of man-made landmarks or
natural attractions from nearly 150 countries with different cultural
and regional styles. The diversity and richness of GeoGlobe allow
us to evaluate the performance of different models more accurately.
The images in this dataset are copyright-free images obtained from
the Internet via a crawler. We divide the images into two main
1http://www.mediafire.com/file/7ht7sn78q27o9we/im2gps3ktest.zip
2http://www.mediafire.com/file/3og8y3o6c9de3ye/yfcc4k.zip
3https://www.kaggle.com/datasets/o0o0oo/geoglobe

categories: man-made landmarks and natural attractions. Then, we
filter out the data samples that could clearly identify the locations
of the landmarks or attractions in the images. As a result, we filter
out nearly three hundred thousand data samples, and please refer
to Table 1 and Figure 3 for details. Due to the fact that a large
number of natural attractions in different geographical regions
with high similarity are cleaned, the magnitude of the data related
to natural attractions in this dataset is smaller than that of man-
made attractions.

Figure 3: The data distribution around the world.

Table 1: Statistics of the dataset GeoGlobe.
Images Cities Countries Attractions

ManMade 252,375 2,313 143 10,492
Natural 39,996 1,044 97 1,849

For an open-world geo-localization task, the relationship be-
tween the training and test samples in the experiment could greatly
affect the results. We label the locations of training samples as
Ztrain, and the ones of test sample set asZtest, and use two metrics,
coverage as well as consistency, to portray this relationship:

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
Ztrain ∩Ztest
Ztrain

× 100%,

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
Ztrain ∩Ztest
Ztest

× 100%.
(6)

As for the samples in this paper, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ≈ 4.6564%, and 𝑐𝑜𝑛−
𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ≈ 33.2957%.
Baselines. In this work, we mainly compare the proposed frame-
work with different geolocation retrieval systems and deep learn-
ing methods: including NetVLAD [1], GeM [34], CosPlace [2],
Translocator [33], and GeoCLIP [40]. For image retrieval systems,
we set the whole training dataset as the geo-tagged image data-
base and only query images in the test dataset for systems to an-
swer. Besides, we select both open-source and close-source LVLMs
with different scales pretrained by various datasets as agents in
the proposed framework. As for the open-source LVLMs, we uti-
lize several open-source fine-tuned LVLMs: Infi-MM4, Qwen-VL
5, vip–llava–7b&13b6, llava–1.5–7b–base&mistral&vicuna7, llava–
1.6–7b&13b&34b–mistral&vicuna8, CogVLM9. As for the closed-
source LVLMs, we chose the models provided by three of the most
4https://huggingface.co/Infi-MM/infimm-zephyr
5https://huggingface.co/Qwen/Qwen-VL
6https://huggingface.co/llava-hf/vip-llava-xxx
7https://huggingface.co/llava-hf/llava-1.5-xxx
8https://huggingface.co/liuhaotian/llava-v1.6-xxx
9https://github.com/THUDM/CogVLM
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famous companies in the world: Claude–3–opus10, GPT–4o–mini11,
and Gemini–1.5–pro 12.
Implemention Details. In all experiments, we employ a variety of
LVLMs, encompassing both open-source and closed-source models,
to be agents in smileGeo. Unless specified otherwise, zero-shot
prompting is applied. Besides, 99% of images from each dataset
are randomly chosen as training samples. For the open-world geo-
localization problem, we constructed the test dataset that is entirely
independent of each training dataset. Additionally, approximately
50%-60% of the test samples consist of images from distinct locations
with no overlap with the training data. Each open-source LVLM is
deployed on a dedicated A800 (80G) GPU server with 200GB mem-
ory. As for each closed-source LVLM, we cost billions of tokens by
calling APIs as specified by the official website. Additionally, we
use a dedicated line to directly access the API from a server in a
US data centre to minimize communication delays. To circumvent
the rate limits on closed-source API calls, we employ hundreds of
different accounts to initiate queries simultaneously. To avoid the
context length issue that occurs in some LVLMs, we truncate the
context before submitting it to the agent for questions based on
the maximum number of tokens that each agent supports. Further-
more, since images are token-intensive, we only retain the latest
response when facilitating discussions between different agents.
More details about the deployment of smileGeo and the settings of
related hyperparameters can be found in Appendix B.
Evaluation Metrics. We use Accuracy (𝐴𝑐𝑐) to evaluate the perfor-
mance: 𝐴𝑐𝑐 = 𝑁correct

𝑁total
, where 𝑁correct is the number of samples that

the proposed framework correctly geo-localizes, and 𝑁total refers
to the total number of testing samples.

3.2 Performance Comparison
Table 2 presents a comparison between our proposed framework
and all baseline approaches. Our framework consistently outper-
forms all other methods. This superior performance can be attrib-
uted to the limitations of traditional image retrieval techniques,
which rely heavily on rich geo-tagged image databases and ex-
hibit constrained reasoning capabilities. In contrast, our method
can effectively analyze and integrate results retrieved from the
Internet, enabling it to calculate more accurate geo-localization
outcomes. Moreover, over half of the images in our test dataset
are new and localized in areas completely different from those in
the training dataset. This underscores the shortcomings of con-
ventional database-based retrieval systems, particularly due to the
inherent limitations of geo-tagged image databases, and demon-
strates the effectiveness of our framework in addressing open-world
geo-localization tasks.

It is also worth noting that the YFCC4K and IM2GPS3K datasets
do not apply artificial filtering to images, resulting in ambigu-
ous content with minimal geographical cues, such as food photos
and portraits. Comparing the model performance across different
datasets, we observe that it performs best on the GeoGlobe dataset.

10https://anthropic.com/
11https://openai.com/
12https://gemini.google.com/

Table 2: Comparison with baselines (𝐴𝑐𝑐,%).

Model IM2GPS3K YFCC4K GeoGlobe
(Natural)

GeoGlobe
(ManMade)

NetVLAD 16.6333 7.4956 26.4339 29.0004
GeM 14.5000 6.5256 23.1920 25.4050

CosPlace 17.6667 7.9586 28.1796 30.2647
Translocator 31.1000 13.4039 26.1845 34.2157
GeoCLIP 34.4667 15.1675 38.1546 45.9107
smileGeo 47.7667 21.5168 76.0599 85.4603

Bold indicates the statistically significant improvements
(i.e., two-sided t-test with 𝑝 < 0.05) over the best baseline.

Table 3: Results of different single LVLM baselines (𝐴𝑐𝑐,%).

Model IM2GPS3K YFCC4K GeoGlobe GeoGlobe
(Natural) (ManMade)

Infi-MM 14.7000 6.5256 19.2020 21.4145
Qwen-VL 32.4667 14.3959 42.3940 37.4556

vip-llava-13b 15.7667 6.9885 20.6983 15.4089
vip-llava-7b 38.7000 17.8792 31.9202 56.4994
llava-1.5-7b 30.2000 13.8889 27.1820 47.2145

llava-1.6-7b-mistral 3.1000 1.6314 0.7481 2.1731
llava-1.6-7b-vicuna 9.4667 4.4092 6.9825 15.8831

llava-1.6-13b 17.8333 8.3333 12.2195 28.2497
llava-1.6-34b 44.2667 20.8113 52.8678 77.2027
CogVLM 6.7333 3.0644 7.7307 10.3516

Claude-3-opus 23.8333 12.3457 33.1671 40.6954
GPT-4o-mini 45.0000 18.3422 62.0948 84.5911
Gemini-1.5-pro 47.3667 19.9956 62.3441 82.8131
smileGeo 47.7667 21.5168 76.0599 85.4603

Bold indicates the statistically significant improvements
(i.e., two-sided t-test with 𝑝 < 0.05) over the best baseline.

3.3 Ablation Study
Effect of LVLM Discussion. In this section, we aim to verify
that the observed performance improvements stem from the col-
laborative discussion among multiple LVLM agents rather than
from a single LVLM agent. To achieve this, we employ the chain-
of-thought (CoT) method [44] to evaluate each agent individually
within our framework, and the results are presented in Table 3. We
can find that smileGeo outperforms any individual LVLM across all
datasets, including the most advanced closed-source models such
as GPT-4o-mini and Gemini-1.5-pro. Furthermore, the varying per-
formances of different single LVLMs on different datasets highlight
that each agent possesses distinct knowledge and reasoning capa-
bilities. Our proposed framework facilitates effective information
exchange among agents, thereby enhancing the reasoning abilities
of the models for diverse geo-localization tasks.
Power of Internet-enabled Information Retrieval. To demon-
strate the benefits of allowing every LVLM agent to retrieve infor-
mation from the Internet for enhancing the knowledge of the model,
as well as the potential for multiple LVLMs to use the retrieved
data for further reasoning, we designed an experiment as shown
in Figure 4. Figure 4(a) illustrates the results without any retrieval,
while Figure 4(b) displays the results when models incorporate the
retrieved information. We compare the proposed model with two
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Table 4: Results of different LVLM agent frameworks testing on GeoGlobe (ManMade).

Framework LLM-
Blender PHP Reflexion LLM

Debate DyLAN smileGeo

Sturcture

GNN

𝐴𝑐𝑐 ↑ 75.3457% 82.3785% 84.1960% 77.0051% 84.8281% 85.4603%
𝑇𝑘𝑠 ↓ 23,662 154,520 109,524 260,756 159,320 17,145

‘𝐴𝑐𝑐’ stands for the accuracy of the framework;
‘𝑇𝑘𝑠’ means the average tokens a framework costs per query (including image tokens).
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Figure 4: The impact of Internet-enabled information retrieval.

types of methods: image similarity-based retrieval approaches and
advanced closed-source large models. The results indicate that im-
age similarity-based methods, such as Translocator and GeoCLIP,
struggle to effectively leverage Internet-retrieved information, lead-
ing to minimal changes in accuracy. In contrast, closed-source large
models show moderate performance improvements when aided by
additional retrieval data. Notably, our method consistently outper-
forms all baselines across datasets, with a significant improvement
of over 20% in the GeoGlobe (natural) dataset for smileGeo. This
demonstrates that our proposed framework, with its robust reason-
ing capabilities, can fully exploit retrieved information to enhance
reasoning and model accuracy.
Different LVLM Agent Structures. We experiment with multi-
agent collaborative frameworks with the same LVLM agents but
different structures, including LLM-Blender [21], PHP [50], Reflex-
ion [39], LLM Debate [7], and DyLAN [26]. The comparative results
across various LVLM agent frameworks are presented in Table 4.
It is evident that the majority of LVLM agent frameworks surpass
individual LVLMs in terms of geo-localization accuracy in Table 3.
This improvement can primarily be attributed to the ability to inte-
grate knowledge from multiple LVLM agents, thereby enhancing
the overall precision of these frameworks. However, LLM-Blender
and LLM Debate exhibit lower accuracy due to statements of some
agents misleading others during discussions, which impedes the
generation of correct outcomes. Our framework, smileGeo, guar-
antees the highest accuracy while being able to accomplish the
geo-localization task with the lowest token costs. The average num-
ber of tokens our framework spent per query is 17,145, and it is less

than the computational overhead of LLM-Blender (23,662), which
has the simplest agent framework structure but the lowest accuracy
among all baselines. This is mainly due to a ’small’ GNN-based
dynamic learning model being deployed for agent selection stages
and significantly reducing unnecessary discussions among agents.

3.4 Efficiency Study
As illustrated in Table 4, the proposed model achieves higher accu-
racy while consuming fewer tokens. To further demonstrate this
efficiency, we introduce a more intuitive metric, Response Time (𝑅𝑇 ),
which reflects the overall performance of smileGeo.

Our framework adapts to different application scenarios by uti-
lizing the variable 𝑍 , as defined in stage 3 of the methodology
section, to strike a balance between model accuracy and efficiency.
For example, when analyzing historical mobility patterns, a higher
𝑍 value can be used since this task is less sensitive to response

Table 5: Model efficiency testing on GeoGlobe (ManMade).
𝑍 𝑅𝑇Avg (ms) 𝑅𝑇Med (ms) 𝐴𝑐𝑐 (%)
0 473 473 75.2667
1 608 607 77.8349
3 766 754 81.5889
5 1,127 1,028 85.4603
10 1,897 1,123 86.2110
15 10,268 1,139 86.6456
20 22,176 1,289 87.0407
50 24,056 1,454 87.5543
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Figure 5: Results of model performance in relation to the
number of agents.

time but requires a higher accuracy. Conversely, for tasks such as
recommending tourist attractions based on dynamic user posts, a
lower 𝑍 value is preferable to prioritize faster responses.

Table 5 reports the average and median of response times (𝑅𝑇Avg,
𝑅𝑇Med), as well as the model accuracy (𝐴𝑐𝑐). In general, as the
maximum allowable discussion round 𝑍 increases, the response
time of smileGeo also increases. However, thanks to implementing
our dynamic learning model with an early stopping strategy, this
growth remains nearly linear rather than exponential.

Then, the comparison of 𝑅𝑇Avg and 𝑅𝑇Med shows that only a
small fraction of image queries require multiple discussion rounds.
These outliers, with significantly longer response times, skew the
average upwards. From the median response time, we observe that
at least 50% of the test samples receive a response within 2 seconds,
an acceptable performance level for most applications.

3.5 Parameter Analysis
Number of Agents. We further demonstrate the relationships be-
tween the number of agents and the framework performance. We
conduct experiments in two ways: (i) by calling the same closed-
source LVLMAPI (Here, we use Gemini-1.5-pro because it performs
best without the help of the Internet) under different prompts (e.g.,
You are good at recognizing natural attractions; You’re a traveler
around Europe) to simulate different agents, and (ii) by using differ-
ent LVLM backbones to represent distinct agents. The results are
shown in Figure 5.

As illustrated in Figure 5(a), the framework achieves optimal
accuracy with 4 or 5 agents. Beyond this number, the framework’s
performance begins to deteriorate. This shows that using the same
backbone model with the fixed knowledge and reasoning capabil-
ities as different agents has limited improvement in the accuracy
of the framework. Despite this decline, the performance of frame-
works other than LLM-Blender and LLM Debate remains superior
to that of a single agent. LLM-Blender and LLM Debate, however,
have a significant decrease in model accuracy when the number of
agents exceeds 11. This is mainly because both of them involve all
LVLMs in every discussion, which suffers from excessive repetitive
and redundant discussions. Figure 5(b) reveals that the accuracy
of the framework improves with the incorporation of more LVLM
backbones, indicating that the diversity of LVLM agents can en-
hance the quality of discussions.
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Figure 6: Results under different 𝐾 and 𝑅.

Hyperparameter 𝐾 & 𝑅. There are two hyperparameters, 𝐾 and
𝑅, that need to be pre-defined in the proposed framework: 𝐾 is the
number of agents (answer agents) that respond in each round of
discussion, and 𝑅 is the number of agents (review agents) used to
review answers from answer agents. Therefore, we conduct experi-
ments under different combinations of 𝐾 ∈ [1, 8] and 𝑅 ∈ [1, 8], as
shown in Figure 6. The results indicate that optimal performance
can be achieved with relatively small values of 𝐾 or 𝑅. However,
the computational cost, measured in tokens, increases exponen-
tially with higher values of 𝐾 and 𝑅. To ensure the accuracy of the
smileGeo while reducing the calculation cost as much as possible,
we set both 𝐾 and 𝑅 equal to 2 in this paper.

3.6 Case Study
To further illustrate the superiority of our proposed framework, we
provide detailed examples. Additional information about the case
study is presented in Appendix C.

4 Discussion
As shown in Figure 7(a), the data retrieved from the internet fre-
quently includes a significant amount of irrelevant advertising in-
formation. This extraneous content hampers the model’s accuracy
in image localization. Figure 7(b) further reveals that, after human
workers manually filtered out the advertising content, 80% of the
retrieval results were unrelated to the queried image. This under-
scores the necessity of enhancing the model’s resilience to such
interference, which will be a major focus of our future research.

Another critical challenge is the computational efficiency, which
is a common limitation of LVLMs. Currently, a range of methods
exists, such as model distillation and compression, which can en-
hance computational efficiency. For instance, in our current imple-
mentation, we used high-performance servers located in U.S. data
centres to support the system and deployed smaller models, like
GPT-4o-mini, to reduce response times. According to our experi-
ments, GPT-4o-mini demonstrated substantially improved response
times compared to previous models, such as GPT-4V. We antici-
pate that ongoing advancements in large-model technology will
continue to address these efficiency concerns. In the future, we
plan to incorporate distillation-based models as agents within our
framework, aiming to enhance both computational performance
and robustness. It is expected to improve system response time and
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Figure 7: A case study demonstrating retrieval results contains a lot of misleading information.

resilience against interference further by enabling faster decision-
making and better adaptability to noisy or irrelevant information.

5 Related Work
VisualGeo-localization. Recent research in visual geo-localization,
commonly referred to as geo-tagging, primarily focuses on develop-
ing image retrieval systems to address this challenge [1, 12, 22, 25,
31, 43]. These systems utilize learned embeddings generated by a
feature extraction backbone, which includes an aggregation or pool-
ing mechanism [14, 17, 32, 34]. However, the applicability of these
retrieval systems to globally geo-localize landmarks or natural at-
tractions is often limited by the constraints of the available database
knowledge and the restrictions imposed by national or regional
geo-data protection laws. Alternatively, some studies treat visual
geo-localization as a classification problem [19, 24, 29, 37]. These ap-
proaches posit that two images from the same geographical region,
despite depicting different scenes, typically share common seman-
tic features. Practically, these methods organize the geographical
area into discrete cells and categorize the image database accord-
ingly. This cell-based categorization facilitates scaling the problem
globally, provided the number of categories remains manageable.
However, while the number of countries globally remains relatively
constant, accurately enumerating cities in real-time at a global scale
is challenging due to frequent administrative changes, such as city
reorganizations or mergers, which reflect shifts in national policies.
Additionally, in the context of globalization, this strategy has in-
herent limitations. The recent advent of LVLMs offers promising
compensatory mechanisms for the deficiencies observed in tradi-
tional geo-localization methodologies, making the exploration of
LVLM-based approaches significantly relevant in current research.
Multi-agent Framework for LLM/LVLMs. LLM/LVLM agents
have demonstrated the potential to act like human [3, 30, 35], and a
large number of studies have focused on developing robust architec-
tures for collaborative LLM/LVLM agents [7, 21, 26, 39, 50]. These ar-
chitectures enable each LLM/LVLM agent that endows with unique
capabilities to engage in debates or discussions. For instance, [21]
proposes an approach to aggregate multiple LLM/LVLM responses
by generating candidate responses from various LLM/LVLM in a
single round and employing pairwise ranking to synthesize the
most effective response. While some studies [21] utilize a static
architecture potentially limiting the performance and generaliza-
tion of LLM/LVLM, others like [26] have implemented dynamic
interaction architectures that adjust according to the query and

incorporate user feedback. Recent advancements also demonstrate
the augmentation of LLM/LVLM as autonomous agents capable
of utilizing external tools to address challenges in interactive set-
tings. These techniques include retrieval augmentation [18, 38, 47],
mathematical tools [27, 36, 47], and code interpreters [10, 42]. With
these capabilities, LLM/LVLMs are well-suited for various tasks,
especially for geo-localization. However, most LLM/LVLM agent
frameworks mandate participation from all agents in at least one
interaction round, leading to significant computational overhead.
To address this issue, our framework introduces a dynamic learning
strategy electing only a small number of agents to geo-localize
different images, which significantly enhances the efficiency of
LLM/LVLM agents by reducing unnecessary interactions.

6 Conclusion
This work introduces a novel LVLM agent framework, smileGeo,
specifically designed for geo-localization tasks. Inspired by the
review mechanism, it integrates various LVLMs to discuss anony-
mously and geo-localize images worldwide. Additionally, we have
developed a dynamic learning strategy for agent collaboration social
networks, electing appropriate agents to geo-localize each image
with different characteristics. This enhancement reduces the com-
putational burden associated with collaborative discussions among
LVLM agents. Moreover, we have constructed a geo-localization
dataset called GeoGlobe to evaluate the proposed framework bet-
ter. Overall, smileGeo demonstrates significant improvements in
geo-localization tasks, achieving superior performance with lower
computational costs compared to state-of-the-art baselines.

Looking ahead, we aim to expand the capabilities of smileGeo to
incorporate more powerful external tools beyond just web search-
ing. Additionally, we plan to explore extending its application to
more complex scenarios, such as high-precision global positioning,
laying the cornerstone for exploring LVLM agent collaboration to
handle different complex open-world tasks efficiently.
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A Notations
We summarize all notations in this paper and list them in Table 6.

Table 6: Notations in this paper.
Notation Description

𝑿 The image to be recognized.
𝒀 (𝒀̂ ) The predicted (ground truth of) location.
G (Ĝ) The predicted (ground truth of) LVLM social network.
𝑨 (𝑨̂) The predicted (ground truth of) adjacency matrix.

𝑳𝒔𝒕 ( ˆ𝑳𝒔𝒕) The predicted (ground truth of) probability list.
V The set of LLM agents.
E The set of connections between LLM agents.
𝑁 The number of agents.
𝐾 The number of answer agent(s).
𝑅 The number of review agent(s).
𝐿 The number of agent discussion rounds.
𝑍 The maximum number of discussion rounds.
Θ The learnable parameters in agent selection model.

B Implementation Details
As a supplement to the Implement Details in the main paper, for

the agent social network learning model, we first deflate each image
to be recognized to 512x512 pixels and then use the pre-trained VAE
model13 to embed the image. We define the embedding dimension
to be 1024 and the hidden layer dimension of the network layer to
be 1024. we use Adam as an optimizer for gradient descent with
a learning rate of 1𝑒−5. For each stage of the discussion, we use a
uniform template for different agents and ask them to respond in a
specified format. In addition, the model performance is the average
of the last 100 epochs in a total training of 2500 epochs.

The detailed algorithm of smileGeo is illustrated in Algorithm 1.
In the initialization stage, we initialize or load the parameters of the
agent social network learning model (line 1). Next, we treat each
LVLM agent as a node, establishing the LVLM agent collaboration
social network and computing the adjacency relationships among
LVLM agents as well as the probability that each agent is suited for
responding to image 𝑿 (line 2). Then, line 3 initializes the agent
collaboration social network and line 4 computes the agent election
probability. In Stage 1, line 5 involves electing appropriate answer
agents based on the calculated probabilities. Subsequently, lines
6-10 detail the process through which each chosen answer agent
formulates their response. Stage 2 begins by employing the random
walk algorithm to assign review agents to each answer agent (lines
11-12). Lines 13-16 then describe how these review agents generate
feedback based on the answers provided. In Stage 3, each answer
agent consolidates feedback from their assigned review agents to
finalize their response (lines 18-21). Line 22 concludes the final
answer with up to 𝑍 rounds (we set 𝑍 = 5 in experiments) of intra-
discussion among all answer agents only. The dynamic learning
strategy module involves 𝐿-round (we set 𝐿 = 20 in experiments)
comparing the generated answers against the ground truth and
updating the connections between the answer and review agents
accordingly (lines 23-36). Finally, it concludes with the updating of
the parameters of the dynamic learning model (line 37).

13https://huggingface.co/stabilityai/sd-vae-ft-mse

Algorithm 1 The smileGeo framework

Input: A set of pre-trained LLMsV = {𝑣1, 𝑣2, · · · }, the input image
𝑿 , and the ground truth 𝒀̂ (if has);

Output: The geospatial location 𝒀 .
Initialization Stage:

1: Initialize (Load) the parameter of the agent selection model: Θ
2: Calculate: 𝑨← 𝑓 (𝑋,V|Θ)
3: Initialize the agent collaboration social network: G
4: Calculate: 𝑳𝒔𝒕 ← 𝑓 (𝑋,G|Θ)

Stage 1:
5: Elect 𝐾 answer agents:V1 = {𝑣1𝑎, 𝑣1𝑏 , · · · } ← 𝑳𝒔𝒕

6: for each answer agent 𝑣1 do
7: Obtain the location: 𝒀 1

𝑣1
← Ask𝑣1 (𝑿 )

8: Get the confidence percentage: 𝐶1
𝑣1
← Ask𝑣1 (𝑿 , 𝒀 1

𝑣1
)

9: Store the further explanation: 𝑇 1
𝑣1
← Ask𝑣1 (𝑿 , 𝒀 1

𝑣1
)

10: end for
Stage 2:

11: for each selected answer agent 𝑣1 do
12: Select 𝑅 review agents:

V2 = {𝑣2𝑎, 𝑣2𝑏 , · · · } ← RandomWalk𝑣1 (G)
13: for each review agent 𝑣2 do
14: Obtain the comment 𝑇 2

𝑣2
← Review𝑣2 (𝑿 , 𝒀 1

𝑣1
,𝐶1

𝑣1
)

15: Get the confidence percentage: 𝐶2
𝑣2
← Ask𝑣2 (𝑿 ,𝑇 2

𝑣2
)

16: end for
17: end for

Stage 3:
18: for each selected answer agent 𝑣1 do
19: Summary the final answer:

𝒀 3
𝑣1
← Summary𝑣1 (𝒀 1

𝑣1
,𝐶1

𝑣1
,𝑇 2

𝑣21
,𝐶2

𝑣21
,𝑇 2

𝑣22
, ,𝐶2

𝑣22
, · · · )

20: Get the final confidence percentage:
𝐶3
𝑣1
← Ask𝑣1 (𝒀 1

𝑣1
,𝐶1

𝑣1
,𝑇 2

𝑣21
,𝐶2

𝑣21
,𝑇 2

𝑣22
, ,𝐶2

𝑣22
, · · · )

21: end for
22: Generate the final answer:

𝒀 ← Discussion𝑍 (𝒀 3
𝑣11
,𝐶3

𝑣12
, 𝒀 3

𝑣12
,𝐶3

𝑣12
, · · · )

The dynamic learning strategy module:
23: Initialize 𝑳𝒔𝒕 (0) ,G (0)
24: for round 𝑙 in total 𝐿 rounds do
25: for each selected answer agent 𝑣1 do
26: Obtain coordinates:

𝐶𝑜𝑜𝑟𝑠 ← GeoEmb(𝒀 3
𝑣1
),

𝐶𝑜𝑜𝑟𝑠Truth ← GeoEmb(𝒀Truth)
27: if Dis(𝐶𝑜𝑜𝑟𝑠,𝐶𝑜𝑜𝑟𝑠Truth) ≤ 𝑡ℎ then
28: 𝑨(𝑙 ) ← Enhance(𝑒 |𝑒 contains 𝑣1, 𝑒 ∈ E)
29: Update 𝑳𝒔𝒕 (𝑙 ) [𝑣1] = 1
30: else
31: 𝑨(𝑙 ) ←Weaken(𝑒 |𝑒 contains 𝑣1, 𝑒 ∈ E)
32: Update 𝑳𝒔𝒕 (𝑙 ) [𝑣1] = 0
33: end if
34: end for
35: end for
36: 𝑨̂ ≈ 𝑨(𝐿) , ˆ𝑳𝒔𝒕 ≈ 𝑳𝒔𝒕 (𝐿)

37: Update: Θ← 𝐿𝑜𝑠𝑠 (𝒀̂ , 𝒀 , 𝑨̂,𝑨, ˆ𝑳𝒔𝒕, 𝑳𝒔𝒕)
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Stage 1: Answer Agent Election & Answering

A�

A�

         Marseille, France, 100%. The building in the image is the CMA CGM 
Tower, which is located in Marseille, France. The logo “CMA CGM” at the top 
of the building is a clear indicator of its location. This tower serves as the head-
quarters for the shipping firm CMA CGM. It’s a notable feature of Marseille’s 
skyline and was completed in September 2011. The unique, angular design of 
the building is also a distinctive feature of this skyscraper.

    Answer the location of this picture by this format: 
<city>, <country>, <confidence percentage>, <explain>. 
For example, Paris, France, 60%, *. If you need to more 
information about this picture, I have done an internet 
search for you and the top results are listed below:
1. Uptown Tower - Propsearch.ae (source：PropSearch.ae)
2. DUBAI | Uptown Tower | 333m | 1094ft | 77 fl | Com |
Page 9 | SkyscraperCity Forum (source: SkyscraperCity
Forum)

                Dubai,  United Arab Emirates, 100%. The building in the image is the 
Uptown Tower located in Dubai, United Arab Emirates. This is confirmed by 
the information provided from the internet search results that mention “DUBAI 
| Uptown Tower”. The tower is a notable feature of Dubai’s skyline with its 
unique and modern architectural design. The logo “DMCC” at the top of the 
building indicates that it’s an office building for the Dubai Multi Commodities 
Centre.

A�

A�

Optimal Agent 
Social Connections

Agent Social Network Initialization Agent Social Network Learning

Agent Election
Probability

  Initialized Agent 
 Social Network

  Image X

GNN

GPT-4o-mini

LLaVA

Qwen

Claude-3

Gemini

Stage 2: Review Agent Selection & Reviewing

         100%.  The building  in  the  image  is  indeed  the  CMA  CGM  Tower,
which is located in Marseille, France. The logo “CMA CGM” at the top of the 
building is a clear indicator of its location. This tower serves as the headquarters 
for the shipping firm CMA CGM. It’s a notable feature of Marseille’s skyline and 
was completed in September 2011. The unique, angular design of the building is 
also a distinctive feature of this skyscraper. The sky behind is clear and ...

     Someone say this picture is located in Dubai, United 
Arab Emirates, with confidence 100% (explain: This is 
confirmed by the information provided from the internet 
search results that mention “DUBAI | Uptown Tower”. The 
tower is a notable feature of Dubai’s skyline with its unique 
and modern architectural design. The logo “DMCC” at the 
top of the building indicates that it’s an office building for 
the Dubai Multi Commodities Centre). What do you think? 
Please use the following format to answer: <confidence 
percentage>, <explain>.

                100%.  I agree with the previous identification.  The  building  in  the 
image is indeed the Uptown Tower located in Dubai, United Arab Emirates. 
This is confirmed by the logo “DMCC” at the top of the building and the unique 
architectural design of the tower, which matches the description of the Uptown 
Tower in Dubai. The information provided from the internet search results that 
mention “DUBAI | Uptown Tower” further supports this identification. The 
tower is a notable feature of Dubai’s skyline and serves as an office building for 
the Dubai Multi Commodities Centre.

R��

Stage 3: Final Answer Conclusion

      You say this picture is located in Dubai, United Arab 
Emirates, with confidence 100%. Here are others comments
with the confidence: 
1. I agree with the previous identification. The ...., 100%;
2. This image features the Uptown Tower in Dubai, ...., 100%.
Please summarize all informations by this format: <city>, 
<country>, <confidence percentage>

       : Dubai, United Arab Emirates, 100%.A�

A�

A�

R��R��

R��,��

R��

      You say this picture is located in Marseille, France, with 
confidence 100%.  Here are others comments with the confi-
dence: 
1. I cannot judge ...., 60%;
2. This image features the Uptown Tower in Dubai, ...., 90%.
Please summarize all informations by this format: <city>, <coun-
try>, <confidence percentage>

: Marseille, France, 80%.A�

VAE 

Encoder

 Dubai, United Arab Emirates, 100%.Y

A�

A�

R��R��

R��,��
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Figure 8: A case study on the geo-localization process via a given image.

C Case Study
In Figure 8, we illustrate a case study of smileGeo. For this demon-
stration, we randomly select an image from the test dataset and
employ five distinct LVLMs: LLaVA, GPT-4o-mini, Claude-3-opus,
Gemini-1.5-pro, and Qwen2. The agent selection model selects two
answer agents, as depicted in the top part of the figure. Then, stages
1-3 detail the process of generating the accurate location. Initially,
only one answer agent provided the correct response. However,

after several rounds of discussion, the agent that initially responded 
incorrectly revised its confidence level. During the final internal 
discussion, this agent aligned its response with the correct answer. 
This outcome validates the model efficiency, demonstrating its abil-
ity to integrate the knowledge and reasoning capabilities of different 
agents to enhance the overall performance.
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